BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

895 related articles for article (PubMed ID: 26774024)

  • 21. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta.
    Tojo M; Hamashima Y; Hanyu A; Kajimoto T; Saitoh M; Miyazono K; Node M; Imamura T
    Cancer Sci; 2005 Nov; 96(11):791-800. PubMed ID: 16271073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TGF-β signaling in cancer metastasis.
    Xie F; Ling L; van Dam H; Zhou F; Zhang L
    Acta Biochim Biophys Sin (Shanghai); 2018 Jan; 50(1):121-132. PubMed ID: 29190313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation.
    Kamato D; Burch ML; Piva TJ; Rezaei HB; Rostam MA; Xu S; Zheng W; Little PJ; Osman N
    Cell Signal; 2013 Oct; 25(10):2017-24. PubMed ID: 23770288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibulin-3 is a novel TGF-β pathway inhibitor in the breast cancer microenvironment.
    Tian H; Liu J; Chen J; Gatza ML; Blobe GC
    Oncogene; 2015 Nov; 34(45):5635-47. PubMed ID: 25823021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory machinery for the TGF-β family signaling pathway.
    Itoh S; Itoh F
    Growth Factors; 2011 Oct; 29(5):163-73. PubMed ID: 21913798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting the role of TGF-beta type I receptor/ALK5 in pancreatic ductal adenocarcinoma: Smad activation is crucial for both the tumor suppressive and prometastatic function.
    Schniewind B; Groth S; Sebens Müerköster S; Sipos B; Schäfer H; Kalthoff H; Fändrich F; Ungefroren H
    Oncogene; 2007 Jul; 26(33):4850-62. PubMed ID: 17297450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TGF-beta signaling: a tale of two responses.
    Rahimi RA; Leof EB
    J Cell Biochem; 2007 Oct; 102(3):593-608. PubMed ID: 17729308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transforming growth factor-β: A therapeutic target for cancer.
    Haque S; Morris JC
    Hum Vaccin Immunother; 2017 Aug; 13(8):1741-1750. PubMed ID: 28575585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion.
    Sundqvist A; Zieba A; Vasilaki E; Herrera Hidalgo C; Söderberg O; Koinuma D; Miyazono K; Heldin CH; Landegren U; Ten Dijke P; van Dam H
    Oncogene; 2013 Aug; 32(31):3606-15. PubMed ID: 22926518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers.
    Halder SK; Beauchamp RD; Datta PK
    Neoplasia; 2005 May; 7(5):509-21. PubMed ID: 15967103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis.
    Nawshad A; Lagamba D; Polad A; Hay ED
    Cells Tissues Organs; 2005; 179(1-2):11-23. PubMed ID: 15942189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway.
    Lamouille S; Derynck R
    J Cell Biol; 2007 Jul; 178(3):437-51. PubMed ID: 17646396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A road map toward defining the role of Smad signaling in hematopoietic stem cells.
    Utsugisawa T; Moody JL; Aspling M; Nilsson E; Carlsson L; Karlsson S
    Stem Cells; 2006 Apr; 24(4):1128-36. PubMed ID: 16357343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SMAD-oncoprotein interplay: Potential determining factors in targeted therapies.
    Li X; Feng XH
    Biochem Pharmacol; 2020 Oct; 180():114155. PubMed ID: 32682760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of the TGF-β pathway by deubiquitinases in cancer.
    Liu S; de Boeck M; van Dam H; Ten Dijke P
    Int J Biochem Cell Biol; 2016 Jul; 76():135-45. PubMed ID: 27155333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Transforming growth factor-beta as a therapeutic target].
    Gálvez-Gastélum FJ; Sandoval-Rodríguez AS; Armendáriz-Borunda J
    Salud Publica Mex; 2004; 46(4):341-50. PubMed ID: 15468575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling.
    Jiang HL; Sun HF; Gao SP; Li LD; Hu X; Wu J; Jin W
    Oncotarget; 2015 Jun; 6(18):16352-65. PubMed ID: 25970785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting TGF-β Signaling in Cancer.
    Colak S; Ten Dijke P
    Trends Cancer; 2017 Jan; 3(1):56-71. PubMed ID: 28718426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial-mesenchymal transition.
    Park CY; Min KN; Son JY; Park SY; Nam JS; Kim DK; Sheen YY
    Cancer Lett; 2014 Aug; 351(1):72-80. PubMed ID: 24887560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.