These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2677403)

  • 1. Locations of amino acid substitutions in bacteriophage T4 tsL56 DNA polymerase predict an N-terminal exonuclease domain.
    Reha-Krantz LJ
    J Virol; 1989 Nov; 63(11):4762-6. PubMed ID: 2677403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies.
    Reha-Krantz LJ; Stocki S; Nonay RL; Dimayuga E; Goodrich LD; Konigsberg WH; Spicer EK
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2417-21. PubMed ID: 2006180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational specificity of a bacteriophage T4 DNA polymerase mutant, mel88.
    Reha-Krantz LJ
    Mol Gen Genet; 1987 Aug; 209(1):90-3. PubMed ID: 3312960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid changes coded by bacteriophage T4 DNA polymerase mutator mutants. Relating structure to function.
    Reha-Krantz LJ
    J Mol Biol; 1988 Aug; 202(4):711-24. PubMed ID: 3172235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fidelity. Isolation of new antimutator and mutator DNA polymerases.
    Reha-Krantz LJ; Nonay RL
    J Biol Chem; 1994 Feb; 269(8):5635-43. PubMed ID: 8119900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single mutation in bacteriophage T4 DNA polymerase (A737V, tsL141) decreases its processivity as a polymerase and increases its processivity as a 3'-->5' exonuclease.
    Spacciapoli P; Nossal NG
    J Biol Chem; 1994 Jan; 269(1):438-46. PubMed ID: 8276833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic evidence for two protein domains and a potential new activity in bacteriophage T4 DNA polymerase.
    Reha-Krantz LJ
    Genetics; 1990 Feb; 124(2):213-20. PubMed ID: 2307357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutator versus antimutator activity of a T4 DNA polymerase mutant distinguishes two different frameshifting mechanisms.
    Ripley LS; Glickman BW; Shoemaker NB
    Mol Gen Genet; 1983; 189(1):113-7. PubMed ID: 6574304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A major role for bacteriophage T4 DNA polymerase in frameshift mutagenesis.
    Ripley LS; Shoemaker NB
    Genetics; 1983 Mar; 103(3):353-66. PubMed ID: 6840538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'-->5' exonuclease activity.
    Frey MW; Nossal NG; Capson TL; Benkovic SJ
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2579-83. PubMed ID: 8464864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribonucleoside and deoxyribonucleoside triphosphate pools during 2-aminopurine mutagenesis in T4 mutator-, wild type-, and antimutator-infected Escherichia coli.
    Hopkins RL; Goodman MF
    J Biol Chem; 1985 Jun; 260(11):6618-22. PubMed ID: 3888983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic mapping of the amino-terminal domain of bacteriophage T4 DNA polymerase.
    Hughes MB; Yee AM; Dawson M; Karam J
    Genetics; 1987 Mar; 115(3):393-403. PubMed ID: 3552871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function studies of the bacteriophage T4 DNA polymerase. Isolation of a novel suppressor mutant.
    Reha-Krantz LJ; Lambert JK
    J Mol Biol; 1985 Dec; 186(3):505-14. PubMed ID: 4093978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis.
    Tabor S; Richardson CC
    J Biol Chem; 1989 Apr; 264(11):6447-58. PubMed ID: 2703498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on transition and transversion mutagenesis: characterization of wild type and a mutator T4 DNA polymerase mutant.
    Reha-Krantz LJ; Parmaksizoglu S
    Can J Genet Cytol; 1984 Jun; 26(3):386-9. PubMed ID: 6375839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence favouring the hypothesis of a conserved 3'-5' exonuclease active site in DNA-dependent DNA polymerases.
    Blanco L; Bernad A; Salas M
    Gene; 1992 Mar; 112(1):139-44. PubMed ID: 1551594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of bacteriophage T4 DNA polymerase mutator mutants.
    Reha-Krantz LJ; Liesner EM; Parmaksizoglu S; Stocki S
    J Mol Biol; 1986 May; 189(2):261-72. PubMed ID: 3746907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitor studies of phage T4 wild-type and mutant DNA polymerases. V. A. summary of kinetic and inhibitor data.
    Schroeder C; Jantschak J
    Z Allg Mikrobiol; 1981; 21(2):141-55. PubMed ID: 6267833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.