These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2677403)

  • 21. Recombination in phage T4 gene-43 (DNA polymerase) mutants.
    Ronen A; Halevy C
    Mol Gen Genet; 1979 Jan; 168(3):319-21. PubMed ID: 286143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutagenic specificity of a novel T4 DNA polymerase mutant.
    Reha-Krantz LJ; Liesner EM
    Genetics; 1984 Mar; 106(3):335-45. PubMed ID: 6368313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using 2-aminopurine fluorescence and mutational analysis to demonstrate an active role of bacteriophage T4 DNA polymerase in strand separation required for 3' --> 5'-exonuclease activity.
    Marquez LA; Reha-Krantz LJ
    J Biol Chem; 1996 Nov; 271(46):28903-11. PubMed ID: 8910538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of DNA sequence and structure on nuclease activity of the DexA protein of bacteriophage T4.
    Gruber H; Kern G; Gauss P; Gold L
    J Bacteriol; 1988 Dec; 170(12):5830-6. PubMed ID: 3056918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3' --> 5' exonuclease activities.
    Stocki SA; Nonay RL; Reha-Krantz LJ
    J Mol Biol; 1995 Nov; 254(1):15-28. PubMed ID: 7473755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary structure of T4 DNA polymerase. Evolutionary relatedness to eucaryotic and other procaryotic DNA polymerases.
    Spicer EK; Rush J; Fung C; Reha-Krantz LJ; Karam JD; Konigsberg WH
    J Biol Chem; 1988 Jun; 263(16):7478-86. PubMed ID: 3286635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Restriction alleviation and enhancement of mutagenesis of the bacteriophage T4 chromosome in recBCsbcA strains of Escherichia coli.
    Kannan PR; Dharmalingam K
    Mol Gen Genet; 1987 Oct; 209(3):413-8. PubMed ID: 3323824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA nick processing by exonuclease and polymerase activities of bacteriophage T4 DNA polymerase accounts for acridine-induced mutation specificities in T4.
    Kaiser VL; Ripley LS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2234-8. PubMed ID: 7892253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of mutation frequency by bacteriophage T4 DNA polymerase. I. The CB120 antimutator DNA polymerase is defective in strand displacement.
    Gillin FD; Nossal NG
    J Biol Chem; 1976 Sep; 251(17):5219-24. PubMed ID: 956182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are there highly conserved DNA polymerase 3'----5' exonuclease motifs?
    Reha-Krantz LJ
    Gene; 1992 Mar; 112(1):133-7. PubMed ID: 1551593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitor studies on phage T4 wild-type and mutant DNA polymerase. IV. The substrate analog 3'-fluorothymidine 5'-triphosphate.
    Schroeder C; Jantschak J
    Z Allg Mikrobiol; 1980; 20(10):657-62. PubMed ID: 7222744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic mutation of bacteriophage T4 lysozyme.
    Rennell D; Bouvier SE; Hardy LW; Poteete AR
    J Mol Biol; 1991 Nov; 222(1):67-88. PubMed ID: 1942069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase.
    Wu P; Nossal N; Benkovic SJ
    Biochemistry; 1998 Oct; 37(42):14748-55. PubMed ID: 9778349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations within conserved motifs in the 3'-5' exonuclease domain of herpes simplex virus DNA polymerase.
    Hall JD; Orth KL; Sander KL; Swihart BM; Senese RA
    J Gen Virol; 1995 Dec; 76 ( Pt 12)():2999-3008. PubMed ID: 8847505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe.
    Fijalkowska IJ; Schaaper RM
    Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2856-61. PubMed ID: 8610131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the biochemical basis of mutation VI. Selection and characterization of a new bacteriophage T4 mutator DNA polymerase.
    Reha-Krantz LJ; Bessman MJ
    J Mol Biol; 1981 Feb; 145(4):677-95. PubMed ID: 6267293
    [No Abstract]   [Full Text] [Related]  

  • 37. DNA polymerase 3'→5' exonuclease activity: Different roles of the beta hairpin structure in family-B DNA polymerases.
    Darmawan H; Harrison M; Reha-Krantz LJ
    DNA Repair (Amst); 2015 May; 29():36-46. PubMed ID: 25753811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of overexpressed phage T5 D15 exonuclease. Similarities with Escherichia coli DNA polymerase I 5'-3' exonuclease.
    Sayers JR; Eckstein F
    J Biol Chem; 1990 Oct; 265(30):18311-7. PubMed ID: 2211703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Mutator effect of suppressed amber-alleles of early genes of bacteriophage T4].
    Alikhanian SI; Piruzian ES; Kobets NS
    Genetika; 1976; 12(9):71-8. PubMed ID: 795721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The DNA adenine methyltransferase (dam+) gene of bacteriophage T4 reverses the mutator phenotype of an Escherichia coli dam mutant.
    Hall RM
    J Bacteriol; 1990 May; 172(5):2812-3. PubMed ID: 2185235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.