These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26774214)

  • 1. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations.
    Kyriakou PK; Ekblad B; Kristiansen PE; Kaznessis YN
    Biochim Biophys Acta; 2016 Apr; 1858(4):824-35. PubMed ID: 26774214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Function Analysis of the Two-Peptide Bacteriocin Plantaricin EF.
    Ekblad B; Kyriakou PK; Oppegård C; Nissen-Meyer J; Kaznessis YN; Kristiansen PE
    Biochemistry; 2016 Sep; 55(36):5106-16. PubMed ID: 27538436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins.
    Soliman W; Wang L; Bhattacharjee S; Kaur K
    J Med Chem; 2011 Apr; 54(7):2399-408. PubMed ID: 21388140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K.
    Hauge HH; Mantzilas D; Eijsink VG; Nissen-Meyer J
    J Bacteriol; 1999 Feb; 181(3):740-7. PubMed ID: 9922235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF.
    Fimland N; Rogne P; Fimland G; Nissen-Meyer J; Kristiansen PE
    Biochim Biophys Acta; 2008 Nov; 1784(11):1711-9. PubMed ID: 18555030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study.
    Cheraghi N; Hosseini M; Mohammadinejad S
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations.
    Cruz VL; Ramos J; Martinez-Salazar J; Montalban-Lopez M; Maqueda M
    J Chem Inf Model; 2021 Dec; 61(12):6066-6078. PubMed ID: 34874722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15.
    Pistolesi S; Pogni R; Feix JB
    Biophys J; 2007 Sep; 93(5):1651-60. PubMed ID: 17496013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial activity and preliminary mode of action of PlnEF expressed in Escherichia coli against Staphylococci.
    Tang X; Wu S; Wang X; Gu Q; Li P
    Protein Expr Purif; 2018 Mar; 143():28-33. PubMed ID: 29037914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides.
    Bocchinfuso G; Bobone S; Mazzuca C; Palleschi A; Stella L
    Cell Mol Life Sci; 2011 Jul; 68(13):2281-301. PubMed ID: 21584808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the antimicrobial mechanism of action of β
    Koivuniemi A; Fallarero A; Bunker A
    Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183028. PubMed ID: 31376362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components.
    Malmsten M
    Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity.
    Cebrián R; Martínez-Bueno M; Valdivia E; Albert A; Maqueda M; Sánchez-Barrena MJ
    J Struct Biol; 2015 May; 190(2):162-72. PubMed ID: 25816760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.