BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26774214)

  • 1. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations.
    Kyriakou PK; Ekblad B; Kristiansen PE; Kaznessis YN
    Biochim Biophys Acta; 2016 Apr; 1858(4):824-35. PubMed ID: 26774214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Function Analysis of the Two-Peptide Bacteriocin Plantaricin EF.
    Ekblad B; Kyriakou PK; Oppegård C; Nissen-Meyer J; Kaznessis YN; Kristiansen PE
    Biochemistry; 2016 Sep; 55(36):5106-16. PubMed ID: 27538436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins.
    Soliman W; Wang L; Bhattacharjee S; Kaur K
    J Med Chem; 2011 Apr; 54(7):2399-408. PubMed ID: 21388140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K.
    Hauge HH; Mantzilas D; Eijsink VG; Nissen-Meyer J
    J Bacteriol; 1999 Feb; 181(3):740-7. PubMed ID: 9922235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF.
    Fimland N; Rogne P; Fimland G; Nissen-Meyer J; Kristiansen PE
    Biochim Biophys Acta; 2008 Nov; 1784(11):1711-9. PubMed ID: 18555030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study.
    Cheraghi N; Hosseini M; Mohammadinejad S
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations.
    Cruz VL; Ramos J; Martinez-Salazar J; Montalban-Lopez M; Maqueda M
    J Chem Inf Model; 2021 Dec; 61(12):6066-6078. PubMed ID: 34874722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15.
    Pistolesi S; Pogni R; Feix JB
    Biophys J; 2007 Sep; 93(5):1651-60. PubMed ID: 17496013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial activity and preliminary mode of action of PlnEF expressed in Escherichia coli against Staphylococci.
    Tang X; Wu S; Wang X; Gu Q; Li P
    Protein Expr Purif; 2018 Mar; 143():28-33. PubMed ID: 29037914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides.
    Bocchinfuso G; Bobone S; Mazzuca C; Palleschi A; Stella L
    Cell Mol Life Sci; 2011 Jul; 68(13):2281-301. PubMed ID: 21584808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the antimicrobial mechanism of action of β
    Koivuniemi A; Fallarero A; Bunker A
    Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183028. PubMed ID: 31376362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components.
    Malmsten M
    Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity.
    Cebrián R; Martínez-Bueno M; Valdivia E; Albert A; Maqueda M; Sánchez-Barrena MJ
    J Struct Biol; 2015 May; 190(2):162-72. PubMed ID: 25816760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.