These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26774421)

  • 1. Design and evaluation of a seat orientation controller during uneven terrain driving.
    Candiotti J; Wang H; Chung CS; Kamaraj DC; Grindle GG; Shino M; Cooper RA
    Med Eng Phys; 2016 Mar; 38(3):241-7. PubMed ID: 26774421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and Stability Analysis of a Novel Power Wheelchair When Traversing Architectural Barriers.
    Candiotti J; Sundaram SA; Daveler B; Gebrosky B; Grindle G; Wang H; Cooper RA
    Top Spinal Cord Inj Rehabil; 2017; 23(2):110-119. PubMed ID: 29339887
    [No Abstract]   [Full Text] [Related]  

  • 3. Usability evaluation of attitude control for a robotic wheelchair for tip mitigation in outdoor environments.
    Sivakanthan S; Candiotti JL; Sundaram SA; Battles C; Daveler BJ; Chung CS; Grindle GG; Cooper R; Dicianno BE; Cooper RA
    Med Eng Phys; 2020 Aug; 82():86-96. PubMed ID: 32709269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usability Evaluation of a Novel Robotic Power Wheelchair for Indoor and Outdoor Navigation.
    Candiotti JL; Kamaraj DC; Daveler B; Chung CS; Grindle GG; Cooper R; Cooper RA
    Arch Phys Med Rehabil; 2019 Apr; 100(4):627-637. PubMed ID: 30148995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participatory design and validation of mobility enhancement robotic wheelchair.
    Daveler B; Salatin B; Grindle GG; Candiotti J; Wang H; Cooper RA
    J Rehabil Res Dev; 2015; 52(6):739-50. PubMed ID: 26562492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tips and falls during electric-powered wheelchair driving: effects of seatbelt use, legrests, and driving speed.
    Corfman TA; Cooper RA; Fitzgerald SG; Cooper R
    Arch Phys Med Rehabil; 2003 Dec; 84(12):1797-802. PubMed ID: 14669186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving wheelchair route planning through instrumentation and navigation systems.
    Dzafic D; Candiotti JL; Cooper RA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5737-5740. PubMed ID: 33019277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.
    Pearlman JL; Cooper RA; Karnawat J; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2005 Dec; 86(12):2361-70. PubMed ID: 16344036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Heuristic Approach to Overcome Architectural Barriers Using a Robotic Wheelchair.
    Candiotti JL; Daveler BJ; Kamaraj DC; Chung CS; Cooper R; Grindle GG; Cooper RA
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1846-1854. PubMed ID: 31403434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yaw rate and linear velocity stabilized manual wheelchair.
    Seifert SJ; Dahlstrom RJ; Condon JP; Hedin DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():878-81. PubMed ID: 24109828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of electric powered wheelchair sideways tips and falls: experimental and computational analysis of impact forces and injury.
    Erickson B; Hosseini MA; Mudhar PS; Soleimani M; Aboonabi A; Arzanpour S; Sparrey CJ
    J Neuroeng Rehabil; 2016 Mar; 13():20. PubMed ID: 26935331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End user evaluation of a Kneeling Wheelchair with "on the fly" adjustable seating functions.
    Mattie J; Wong A; Leland D; Borisoff J
    Disabil Rehabil Assist Technol; 2019 Aug; 14(6):543-554. PubMed ID: 29667464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-terrain self-leveling wheelchair.
    Schofield A; Barrett S
    Biomed Sci Instrum; 2014; 50():431-6. PubMed ID: 25405455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of a novel, smartglass-based control device for electrically powered wheelchairs.
    Penkert H; Baron JC; Madaus K; Huber W; Berthele A
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):172-176. PubMed ID: 31381862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait algorithm of personal mobility vehicle for negotiating obstacles.
    Nakajima S
    Disabil Rehabil Assist Technol; 2014 Mar; 9(2):151-63. PubMed ID: 24345285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of selected electric-powered wheelchairs using the ANSI/RESNA standards.
    Rentschler AJ; Cooper RA; Fitzgerald SG; Boninger ML; Guo S; Ammer WA; Vitek M; Algood D
    Arch Phys Med Rehabil; 2004 Apr; 85(4):611-9. PubMed ID: 15083438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of A Learning-Based Terrain Classification Framework for Pushrim-Activated Power-Assisted Wheelchairs
    Khalili M; McConkey KT; Ta K; Wu LC; Van der Loos HFM; Borisoff JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4762-4765. PubMed ID: 33019055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of seating, powered characteristics and functions and costs of electrically powered wheelchairs in a general population of users.
    Dolan MJ; Bolton MJ; Henderson GI
    Disabil Rehabil Assist Technol; 2019 Jan; 14(1):56-61. PubMed ID: 29072545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decentralized Motion Control for Omnidirectional Wheelchair Tracking Error Elimination Using PD-Fuzzy-P and GA-PID Controllers.
    Batayneh W; AbuRmaileh Y
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A five-wheel wheelchair with an active-caster drive system.
    Munakata Y; Tanaka A; Wada M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650438. PubMed ID: 24187256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.