BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 26774562)

  • 1. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury.
    Li G; Che MT; Zhang K; Qin LN; Zhang YT; Chen RQ; Rong LM; Liu S; Ding Y; Shen HY; Long SM; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Mar; 83():233-48. PubMed ID: 26774562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection.
    Qiu XC; Jin H; Zhang RY; Ding Y; Zeng X; Lai BQ; Ling EA; Wu JL; Zeng YS
    Stem Cell Res Ther; 2015 May; 6(1):105. PubMed ID: 26012641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury.
    Li G; Che MT; Zeng X; Qiu XC; Feng B; Lai BQ; Shen HY; Ling EA; Zeng YS
    J Biomed Mater Res A; 2018 Aug; 106(8):2158-2170. PubMed ID: 29577604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection.
    Du BL; Zeng X; Ma YH; Lai BQ; Wang JM; Ling EA; Wu JL; Zeng YS
    J Biomed Mater Res A; 2015 Apr; 103(4):1533-45. PubMed ID: 25046856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-acupuncture promotes the survival and differentiation of transplanted bone marrow mesenchymal stem cells pre-induced with neurotrophin-3 and retinoic acid in gelatin sponge scaffold after rat spinal cord transection.
    Zhang K; Liu Z; Li G; Lai BQ; Qin LN; Ding Y; Ruan JW; Zhang SX; Zeng YS
    Stem Cell Rev Rep; 2014 Aug; 10(4):612-25. PubMed ID: 24789671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury.
    Zeng X; Zeng YS; Ma YH; Lu LY; Du BL; Zhang W; Li Y; Chan WY
    Cell Transplant; 2011; 20(11-12):1881-99. PubMed ID: 21396163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat.
    Du BL; Zeng CG; Zhang W; Quan DP; Ling EA; Zeng YS
    J Biomed Mater Res A; 2014 Jun; 102(6):1715-25. PubMed ID: 23776140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graft of a tissue-engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection.
    Lai BQ; Wang JM; Ling EA; Wu JL; Zeng YS
    Stem Cells Dev; 2014 Apr; 23(8):910-21. PubMed ID: 24325427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained release of neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury.
    Hanna A; Thompson DL; Hellenbrand DJ; Lee JS; Madura CJ; Wesley MG; Dillon NJ; Sharma T; Enright CJ; Murphy WL
    J Neurosci Res; 2016 Jul; 94(7):645-52. PubMed ID: 27015737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats.
    Novikova LN; Novikov LN; Kellerth JO
    J Comp Neurol; 2002 Oct; 452(3):255-63. PubMed ID: 12353221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold with incorporated neurotrophin-3 for spinal cord injury repair.
    Sha Q; Wang Y; Zhu Z; Wang H; Qiu H; Niu W; Li X; Qian J
    Acta Biomater; 2023 Sep; 167():219-233. PubMed ID: 37257575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oxygen generating scaffolds on cell survival and functional recovery following acute spinal cord injury in rats.
    Liu L; Wan J; Dai M; Ye X; Liu C; Tang C; Zhu L
    J Mater Sci Mater Med; 2020 Nov; 31(12):115. PubMed ID: 33247423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-seeded porous silk fibroin scaffolds promotes axonal regeneration and myelination in spinal cord injury rats.
    You K; Chang H; Zhang F; Shen Y; Zhang Y; Cai F; Liu L; Liu X
    Biochem Biophys Res Commun; 2019 Jun; 514(1):273-279. PubMed ID: 31030943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of controlled release of neurotrophin-3 from PCLA scaffolds on the survival and neuronal differentiation of transplanted neural stem cells in a rat spinal cord injury model.
    Tang S; Liao X; Shi B; Qu Y; Huang Z; Lin Q; Guo X; Pei F
    PLoS One; 2014; 9(9):e107517. PubMed ID: 25215612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair.
    Hwang DH; Kim HM; Kang YM; Joo IS; Cho CS; Yoon BW; Kim SU; Kim BG
    Cell Transplant; 2011; 20(9):1361-79. PubMed ID: 21396156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats.
    Ding Y; Yan Q; Ruan JW; Zhang YQ; Li WJ; Zeng X; Huang SF; Zhang YJ; Wu JL; Fisher D; Dong H; Zeng YS
    Cell Transplant; 2013; 22(1):65-86. PubMed ID: 23006476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.