BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26774573)

  • 1. Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging.
    Wang C; Yao Y; Song Q
    Colloids Surf B Biointerfaces; 2016 Apr; 140():373-381. PubMed ID: 26774573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO
    Zhang Y; Li Y; Zhang C; Zhang Q; Huang X; Yang M; Shahzad SA; Lo KK; Yu C; Jiang S
    Anal Bioanal Chem; 2017 Aug; 409(20):4771-4778. PubMed ID: 28616667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethylenimine-protected green-emission copper nanoclusters as highly effective fluorescent and colorimetric nanoprobe for selective cobalt ions and temperature sensing.
    Ren J; Wu W; Chen T; Guo H; Xu C; Ma J; Wang L; Wang J; Li L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123438. PubMed ID: 37748337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H
    Hu X; Liu X; Zhang X; Chai H; Huang Y
    Biosens Bioelectron; 2018 May; 105():65-70. PubMed ID: 29355780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent sensing platform based on polyethyleneimine-protected copper nanoclusters for detection of chromium(VI) in real samples.
    Gan M; Wang Y; Wang F; Tan J; Pei Y; Wang J; Choi MMF; Bian W
    Luminescence; 2024 Feb; 39(2):e4689. PubMed ID: 38361140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatically controlled fluorometric assay for differently charged biotargets based on the use of silver/copper bimetallic nanoclusters modified with polyethyleneimine and graphene oxide.
    Yang J; Song N; Jia Q
    Mikrochim Acta; 2019 Jan; 186(2):70. PubMed ID: 30627782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells.
    Ramadurai M; Rajendran G; Bama TS; Prabhu P; Kathiravan K
    J Photochem Photobiol B; 2020 Apr; 205():111845. PubMed ID: 32172137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.
    Qu F; Zou X; Kong R; You J
    Talanta; 2016; 146():549-55. PubMed ID: 26695303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb(2+) in living cells.
    Wang C; Cheng H; Huang Y; Xu Z; Lin H; Zhang C
    Analyst; 2015 Aug; 140(16):5634-9. PubMed ID: 26133700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent PET probe based on polyethyleneimine-Ag nanoclusters as a reversible, stable and selective broad-range pH sensor.
    Reyes-Cruzaley AP; Ochoa-Terán A; Tirado-Guízar A; Félix-Navarro RM; Alonso-Núñez G; Pina-Luis G
    Anal Methods; 2021 Jun; 13(22):2495-2503. PubMed ID: 34002195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly fluorescent copper nanoclusters for sensing and bioimaging.
    An Y; Ren Y; Bick M; Dudek A; Hong-Wang Waworuntu E; Tang J; Chen J; Chang B
    Biosens Bioelectron; 2020 Apr; 154():112078. PubMed ID: 32056972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.
    Zhang M; Qiao J; Zhang S; Qi L
    Talanta; 2018 May; 182():595-599. PubMed ID: 29501198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folic acid modified copper nanoclusters for fluorescent imaging of cancer cells with over-expressed folate receptor.
    Xia JM; Wei X; Chen XW; Shu Y; Wang JH
    Mikrochim Acta; 2018 Mar; 185(3):205. PubMed ID: 29594762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of water-soluble, ultrabright Cu nanoclusters with core-shell structure via facile reduction approach for determination of 4-nitrophenol.
    Yin JH; Liu M; Meng L; Tan ND; Xu N
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34348244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor.
    Feng J; Ju Y; Liu J; Zhang H; Chen X
    Anal Chim Acta; 2015 Jan; 854():153-60. PubMed ID: 25479879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent nanoparticles from starch: facile preparation, tunable luminescence and bioimaging.
    Liu M; Zhang X; Yang B; Li Z; Deng F; Yang Y; Zhang X; Wei Y
    Carbohydr Polym; 2015 May; 121():49-55. PubMed ID: 25659670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyethyleneimine protected silver nanoclusters luminescence probe for sensitive detection of cobalt (II) in living cells.
    Meng L; Zhu Q; Yin JH; Xu N
    J Photochem Photobiol B; 2017 Aug; 173():508-513. PubMed ID: 28683398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PVP-templated highly luminescent copper nanoclusters for sensing trinitrophenol and living cell imaging.
    Li Y; Feng L; Yan W; Hussain I; Su L; Tan B
    Nanoscale; 2019 Jan; 11(3):1286-1294. PubMed ID: 30603761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters.
    Ling Y; Zhang N; Qu F; Wen T; Gao ZF; Li NB; Luo HQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():315-20. PubMed ID: 24055680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction.
    Fernández-Ujados M; Trapiella-Alfonso L; Costa-Fernández JM; Pereiro R; Sanz-Medel A
    Nanotechnology; 2013 Dec; 24(49):495601. PubMed ID: 24231856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.