These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26774580)

  • 1. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.
    Verga D; Welter M; Marx A
    Bioorg Med Chem Lett; 2016 Feb; 26(3):841-844. PubMed ID: 26774580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.
    Mohsen MG; Kool ET
    Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of DNA polymerase for improvement of rolling circle amplification.
    Yoshimura T; Arikado S; Ohuchi S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):303-4. PubMed ID: 17150938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA polymerase-catalyzed incorporation of nucleotides modified with a G-quadruplex-derived DNAzyme.
    Verga D; Welter M; Steck AL; Marx A
    Chem Commun (Camb); 2015 Apr; 51(34):7379-81. PubMed ID: 25825211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of rolling circle amplification by nucleotide analogs in circular template for three DNA polymerases.
    Tang S; Wei H; Hu T; Jiang J; Chang J; Guan Y; Zhao G
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1555-61. PubMed ID: 27151504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification.
    Guo Y; Wang Y; Liu S; Yu J; Wang H; Wang Y; Huang J
    Biosens Bioelectron; 2016 Jan; 75():315-9. PubMed ID: 26334590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA.
    Li XY; Du YC; Zhang YP; Kong DM
    Sci Rep; 2017 Jul; 7(1):6263. PubMed ID: 28740223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave assisted rolling circle amplification.
    Yoshimura T; Nishida K; Uchibayashi K; Ohuchi S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):305-6. PubMed ID: 17150939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units.
    Wang F; Lu CH; Liu X; Freage L; Willner I
    Anal Chem; 2014 Feb; 86(3):1614-21. PubMed ID: 24377284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual detection of bacterial pathogens via PNA-based padlock probe assembly and isothermal amplification of DNAzymes.
    Gomez A; Miller NS; Smolina I
    Anal Chem; 2014 Dec; 86(24):11992-8. PubMed ID: 25415469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification.
    Bi S; Li L; Zhang S
    Anal Chem; 2010 Nov; 82(22):9447-54. PubMed ID: 20954711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase.
    Garafutdinov RR; Sakhabutdinova AR; Kupryushkin MS; Pyshnyi DV
    Biochimie; 2020 Jan; 168():259-267. PubMed ID: 31765671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrest of rolling circle amplification by protein-binding DNA aptamers.
    Wang L; Tram K; Ali MM; Salena BJ; Li J; Li Y
    Chemistry; 2014 Feb; 20(9):2420-4. PubMed ID: 24590539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rolling circle amplification with fluorescently labeled dUTP-balancing the yield and degree of labeling.
    Goryunova MS; Arzhanik VK; Zavriev SK; Ryazantsev DY
    Anal Bioanal Chem; 2021 Jun; 413(14):3737-3748. PubMed ID: 33834268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA).
    Xu W; Xie X; Li D; Yang Z; Li T; Liu X
    Small; 2012 Jun; 8(12):1846-50. PubMed ID: 22461378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient enzymatic synthesis of LNA-modified DNA duplexes using KOD DNA polymerase.
    Veedu RN; Vester B; Wengel J
    Org Biomol Chem; 2009 Apr; 7(7):1404-9. PubMed ID: 19300826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism.
    Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X
    Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro incorporation of LNA nucleotides.
    Veedu RN; Vester B; Wengel J
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(8-9):1207-10. PubMed ID: 18058567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding possibilities of rolling circle amplification as a biosensing platform.
    Kobori T; Takahashi H
    Anal Sci; 2014; 30(1):59-64. PubMed ID: 24420245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.