These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26774645)

  • 1. Design and biological testing of peptidic dimerization inhibitors of human Hsp90 that target the C-terminal domain.
    Bopp B; Ciglia E; Ouald-Chaib A; Groth G; Gohlke H; Jose J
    Biochim Biophys Acta; 2016 Jun; 1860(6):1043-55. PubMed ID: 26774645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural models and binding site prediction of the C-terminal domain of human Hsp90: a new target for anticancer drugs.
    Sgobba M; Degliesposti G; Ferrari AM; Rastelli G
    Chem Biol Drug Des; 2008 May; 71(5):420-433. PubMed ID: 18373550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
    Harris SF; Shiau AK; Agard DA
    Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinventing Hsp90 Inhibitors: Blocking C-Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors.
    Koay YC; Wahyudi H; McAlpine SR
    Chemistry; 2016 Dec; 22(51):18572-18582. PubMed ID: 27859703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural ensemble-based docking simulation and biophysical studies discovered new inhibitors of Hsp90 N-terminal domain.
    Kim HH; Hyun JS; Choi J; Choi KE; Jee JG; Park SJ
    Sci Rep; 2018 Jan; 8(1):368. PubMed ID: 29321504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-terminal domain dimerization in yeast Hsp90 is moderately modulated by the other domains.
    Oranges M; Giannoulis A; Vanyushkina A; Sirkis YF; Dalaloyan A; Unger T; Su XC; Sharon M; Goldfarb D
    Biophys J; 2024 Jan; 123(2):172-183. PubMed ID: 38071428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix.
    Gavenonis J; Jonas NE; Kritzer JA
    Bioorg Med Chem; 2014 Aug; 22(15):3989-93. PubMed ID: 24984936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2016 Nov; 70():253-274. PubMed ID: 27771574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.
    Goode KM; Petrov DP; Vickman RE; Crist SA; Pascuzzi PE; Ratliff TL; Davisson VJ; Hazbun TR
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1992-2006. PubMed ID: 28495207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of dimer formation of the 90-kDa heat-shock protein.
    Nemoto T; Ohara-Nemoto Y; Ota M; Takagi T; Yokoyama K
    Eur J Biochem; 1995 Oct; 233(1):1-8. PubMed ID: 7588731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional studies of Leishmania braziliensis Hsp90.
    Silva KP; Seraphim TV; Borges JC
    Biochim Biophys Acta; 2013 Jan; 1834(1):351-61. PubMed ID: 22910377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle.
    Ratzke C; Mickler M; Hellenkamp B; Buchner J; Hugel T
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16101-6. PubMed ID: 20736353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains.
    Prodromou C; Panaretou B; Chohan S; Siligardi G; O'Brien R; Ladbury JE; Roe SM; Piper PW; Pearl LH
    EMBO J; 2000 Aug; 19(16):4383-92. PubMed ID: 10944121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the binding site of C-terminal hsp90 inhibitors.
    Sgobba M; Forestiero R; Degliesposti G; Rastelli G
    J Chem Inf Model; 2010 Sep; 50(9):1522-8. PubMed ID: 20828111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hexameric structures of human heat shock protein 90.
    Lee CC; Lin TW; Ko TP; Wang AH
    PLoS One; 2011; 6(5):e19961. PubMed ID: 21647436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox.
    Okada M; Itoh H; Hatakeyama T; Tokumitsu H; Kobayashi R
    Biochem J; 2003 Sep; 374(Pt 2):433-41. PubMed ID: 12803546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of dual agents as an activator of mutant p53 and inhibitor of Hsp90 by docking, molecular dynamic simulation and virtual screening.
    Abbasi M; Sadeghi-Aliabadi H; Hassanzadeh F; Amanlou M
    J Mol Graph Model; 2015 Sep; 61():186-95. PubMed ID: 26277488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37.
    Roiniotis J; Masendycz P; Ho S; Scholz GM
    Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving hot spots in the C-terminal dimerization domain that determine the stability of the molecular chaperone Hsp90.
    Ciglia E; Vergin J; Reimann S; Smits SH; Schmitt L; Groth G; Gohlke H
    PLoS One; 2014; 9(4):e96031. PubMed ID: 24760083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.