BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26774751)

  • 1. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.
    Smith MR; Vayalil PK; Zhou F; Benavides GA; Beggs RR; Golzarian H; Nijampatnam B; Oliver PG; Smith RA; Murphy MP; Velu SE; Landar A
    Redox Biol; 2016 Aug; 8():136-48. PubMed ID: 26774751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption.
    Venkatraman A; Landar A; Davis AJ; Ulasova E; Page G; Murphy MP; Darley-Usmar V; Bailey SM
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The permissive role of mitochondria in the induction of haem oxygenase-1 in endothelial cells.
    Ricart KC; Bolisetty S; Johnson MS; Perez J; Agarwal A; Murphy MP; Landar A
    Biochem J; 2009 Apr; 419(2):427-36. PubMed ID: 19161347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach.
    Lin TK; Hughes G; Muratovska A; Blaikie FH; Brookes PS; Darley-Usmar V; Smith RA; Murphy MP
    J Biol Chem; 2002 May; 277(19):17048-56. PubMed ID: 11861642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel class of mitochondria-targeted soft electrophiles modifies mitochondrial proteins and inhibits mitochondrial metabolism in breast cancer cells through redox mechanisms.
    Vayalil PK; Oh JY; Zhou F; Diers AR; Smith MR; Golzarian H; Oliver PG; Smith RA; Murphy MP; Velu SE; Landar A
    PLoS One; 2015; 10(3):e0120460. PubMed ID: 25785718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass tagging approach for mitochondrial thiol proteins.
    Marley K; Mooney DT; Clark-Scannell G; Tong TT; Watson J; Hagen TM; Stevens JF; Maier CS
    J Proteome Res; 2005; 4(4):1403-12. PubMed ID: 16083293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maneb alters central carbon metabolism and thiol redox status in a toxicant model of Parkinson's disease.
    Anderson CC; Marentette JO; Rauniyar AK; Prutton KM; Khatri M; Matheson C; Reisz JA; Reigan P; D'Alessandro A; Roede JR
    Free Radic Biol Med; 2021 Jan; 162():65-76. PubMed ID: 33279619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.
    Radde BN; Alizadeh-Rad N; Price SM; Schultz DJ; Klinge CM
    J Cell Biochem; 2016 Nov; 117(11):2521-32. PubMed ID: 26990649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay.
    Menon SG; Coleman MC; Walsh SA; Spitz DR; Goswami PC
    Antioxid Redox Signal; 2005; 7(5-6):711-8. PubMed ID: 15890017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes.
    Fang B; Zhang M; Ge KS; Xing HZ; Ren FZ
    J Dairy Sci; 2018 Jun; 101(6):4853-4863. PubMed ID: 29550120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen.
    Radde BN; Ivanova MM; Mai HX; Salabei JK; Hill BG; Klinge CM
    Biochem J; 2015 Jan; 465(1):49-61. PubMed ID: 25279503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germline BRCA1 mutation reprograms breast epithelial cell metabolism towards mitochondrial-dependent biosynthesis: evidence for metformin-based "starvation" strategies in BRCA1 carriers.
    Cuyàs E; Fernández-Arroyo S; Alarcón T; Lupu R; Joven J; Menendez JA
    Oncotarget; 2016 Aug; 7(33):52974-52992. PubMed ID: 27259235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines.
    Gwangwa MV; Joubert AM; Visagie MH
    Biol Res; 2019 Mar; 52(1):15. PubMed ID: 30917872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine to proline conversion is associated with response to glutaminase inhibition in breast cancer.
    Grinde MT; Hilmarsdottir B; Tunset HM; Henriksen IM; Kim J; Haugen MH; Rye MB; Mælandsmo GM; Moestue SA
    Breast Cancer Res; 2019 May; 21(1):61. PubMed ID: 31088535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.
    Nietzel T; Mostertz J; Hochgräfe F; Schwarzländer M
    Mitochondrion; 2017 Mar; 33():72-83. PubMed ID: 27456428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.