These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26774796)

  • 1. Automatic detection of referral patients due to retinal pathologies through data mining.
    Quellec G; Lamard M; Erginay A; Chabouis A; Massin P; Cochener B; Cazuguel G
    Med Image Anal; 2016 Apr; 29():47-64. PubMed ID: 26774796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiple-instance learning framework for diabetic retinopathy screening.
    Quellec G; Lamard M; Abràmoff MD; Decencière E; Lay B; Erginay A; Cochener B; Cazuguel G
    Med Image Anal; 2012 Aug; 16(6):1228-40. PubMed ID: 22850462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of lesions in retina photographs based on the wavelet transform.
    Quellec G; Lamard M; Josselin PM; Cazuguel G; Cochener B; Roux C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2618-21. PubMed ID: 17945729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splat feature classification with application to retinal hemorrhage detection in fundus images.
    Tang L; Niemeijer M; Reinhardt JM; Garvin MK; Abràmoff MD
    IEEE Trans Med Imaging; 2013 Feb; 32(2):364-75. PubMed ID: 23193310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
    Rosas-Romero R; Martínez-Carballido J; Hernández-Capistrán J; Uribe-Valencia LJ
    Comput Med Imaging Graph; 2015 Sep; 44():41-53. PubMed ID: 26245720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ensemble-based system for microaneurysm detection and diabetic retinopathy grading.
    Antal B; Hajdu A
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1720-6. PubMed ID: 22481810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic localization of retinal landmarks.
    Cheng X; Wong DW; Liu J; Lee BH; Tan NM; Zhang J; Cheng CY; Cheung G; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4954-7. PubMed ID: 23367039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for the automatic grading of retinal vessel tortuosity.
    Grisan E; Foracchia M; Ruggeri A
    IEEE Trans Med Imaging; 2008 Mar; 27(3):310-9. PubMed ID: 18334427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landmark detection for fusion of fundus and MRI toward a patient-specific multimodal eye model.
    De Zanet SI; Ciller C; Rudolph T; Maeder P; Munier F; Balmer A; Cuadra MB; Kowal JH
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):532-40. PubMed ID: 25265602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.
    Aquino A; Gegundez-Arias ME; Marin D
    IEEE Trans Med Imaging; 2010 Nov; 29(11):1860-9. PubMed ID: 20562037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal wavelet transform for the detection of microaneurysms in retina photographs.
    Quellec G; Lamard M; Josselin PM; Cazuguel G; Cochener B; Roux C
    IEEE Trans Med Imaging; 2008 Sep; 27(9):1230-41. PubMed ID: 18779064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.
    Lee S; Reinhardt JM; Cattin PC; Abràmoff MD
    Med Image Anal; 2010 Aug; 14(4):539-49. PubMed ID: 20493760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimedia data mining for automatic diabetic retinopathy screening.
    Quellec G; Lamard M; Cochener B; Decencière E; Lay B; Chabouis A; Roux C; Cazuguel G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7144-7. PubMed ID: 24111392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic detection of the macula in retinal fundus images using seeded mode tracking approach.
    Wong DW; Liu J; Tan NM; Yin F; Cheng X; Cheng CY; Cheung GC; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4950-3. PubMed ID: 23367038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.