These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 2677515)
1. [Indirect determination of the intrapulmonary pressure course in the lung model in high frequency ventilation]. Hultzsch W; Lipowsky G Klin Wochenschr; 1989 Sep; 67(18):946-50. PubMed ID: 2677515 [TBL] [Abstract][Full Text] [Related]
2. [Intrapulmonary pressure measurements in high frequency ventilation of extremely small premature infants. The triggered airway occlusion method]. Hultzsch W; Lipowsky G Monatsschr Kinderheilkd; 1992 Aug; 140(8):476-82. PubMed ID: 1435807 [TBL] [Abstract][Full Text] [Related]
3. Intratracheal pulmonary ventilation in a rabbit lung injury model: continuous airway pressure monitoring and gas exchange efficacy. Hon EK; Hultquist KA; Loescher T; Raszynski A; Torbati D; Tabares C; Wolfsdorf J Crit Care Med; 2000 Jul; 28(7):2480-5. PubMed ID: 10921582 [TBL] [Abstract][Full Text] [Related]
4. Airway pressure measurements during high-frequency positive pressure ventilation in extremely low birth weight neonates. Roithmaier A; Hultzsch W; Lipowsky G; Reinhardt D Crit Care Med; 1994 Sep; 22(9 Suppl):S71-6. PubMed ID: 8070273 [TBL] [Abstract][Full Text] [Related]
5. Use of intratracheal pulmonary ventilation versus conventional ventilation in meconium aspiration syndrome in a newborn pig model. Handman H; Rais-Bahrami K; Rivera O; Seale WR; Short BL Crit Care Med; 1997 Dec; 25(12):2025-30. PubMed ID: 9403753 [TBL] [Abstract][Full Text] [Related]
6. Effects of continuous, expiratory, reverse, and bi-directional tracheal gas insufflation in conjunction with a flow relief valve on delivered tidal volume, total positive end-expiratory pressure, and carbon dioxide elimination: a bench study. Delgado E; Hete B; Hoffman LA; Tasota FJ; Pinsky MR Respir Care; 2001 Jun; 46(6):577-85. PubMed ID: 11353546 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of Mid-Frequency Ventilation Among Infants With Respiratory Distress Syndrome. Bhat R; Kelleher J; Ambalavanan N; Chatburn RL; Mireles-Cabodevila E; Carlo WA Respir Care; 2017 Apr; 62(4):481-488. PubMed ID: 28049742 [TBL] [Abstract][Full Text] [Related]
8. Volume recruitment maneuvers are less deleterious than persistent low lung volumes in the atelectasis-prone rabbit lung during high-frequency oscillation. Bond DM; Froese AB Crit Care Med; 1993 Mar; 21(3):402-12. PubMed ID: 8440111 [TBL] [Abstract][Full Text] [Related]
9. Setting positive end-expiratory pressure during jet ventilation to replicate the mean airway pressure of oscillatory ventilation. Bass AL; Gentile MA; Heinz JP; Craig DM; Hamel DS; Cheifetz IM Respir Care; 2007 Jan; 52(1):50-5. PubMed ID: 17194318 [TBL] [Abstract][Full Text] [Related]
10. Liquid assisted ventilation: an alternative ventilatory strategy for acute meconium aspiration injury. Foust R; Tran NN; Cox C; Miller TF; Greenspan JS; Wolfson MR; Shaffer TH Pediatr Pulmonol; 1996 May; 21(5):316-22. PubMed ID: 8726157 [TBL] [Abstract][Full Text] [Related]
11. Open lung ventilation improves gas exchange and attenuates secondary lung injury in a piglet model of meconium aspiration. van Kaam AH; Haitsma JJ; De Jaegere A; van Aalderen WM; Kok JH; Lachmann B Crit Care Med; 2004 Feb; 32(2):443-9. PubMed ID: 14758162 [TBL] [Abstract][Full Text] [Related]
12. In vitro assessment of proportional assist ventilation. Patel DS; Rafferty GF; Hannam S; Lee S; Milner AD; Greenough A Arch Dis Child Fetal Neonatal Ed; 2010 Sep; 95(5):F331-7. PubMed ID: 20530104 [TBL] [Abstract][Full Text] [Related]
13. Inadvertent positive end-expiratory pressure in mechanically ventilated newborn infants: detection and effect on lung mechanics and gas exchange. Simbruner G J Pediatr; 1986 Apr; 108(4):589-95. PubMed ID: 3083078 [TBL] [Abstract][Full Text] [Related]
14. Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Adams AB; Cakar N; Marini JJ Respir Care; 2001 Jul; 46(7):686-93. PubMed ID: 11455939 [TBL] [Abstract][Full Text] [Related]
15. Selecting ventilator settings according to variables derived from the quasi-static pressure/volume relationship in patients with acute lung injury. Putensen C; Baum M; Hörmann C Anesth Analg; 1993 Sep; 77(3):436-47. PubMed ID: 8368542 [TBL] [Abstract][Full Text] [Related]
16. Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome: a prospective, randomized, controlled study. Leach CL; Fuhrman BP; Morin FC; Rath MG Crit Care Med; 1993 Sep; 21(9):1270-8. PubMed ID: 8370289 [TBL] [Abstract][Full Text] [Related]
18. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation. Prella M; Feihl F; Domenighetti G Chest; 2002 Oct; 122(4):1382-8. PubMed ID: 12377869 [TBL] [Abstract][Full Text] [Related]
19. Specific compliance and gas exchange during high-frequency oscillatory ventilation. Wood B; Karna P; Adams A Crit Care Med; 2002 Jul; 30(7):1523-7. PubMed ID: 12130973 [TBL] [Abstract][Full Text] [Related]
20. Lung recruitment and endotracheal suction in ventilated preterm infants measured with electrical impedance tomography. Hough JL; Shearman AD; Liley H; Grant CA; Schibler A J Paediatr Child Health; 2014 Nov; 50(11):884-9. PubMed ID: 24965750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]