BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26775182)

  • 1. A neural-based vocoder implementation for evaluating cochlear implant coding strategies.
    El Boghdady N; Kegel A; Lai WK; Dillier N
    Hear Res; 2016 Mar; 333():136-149. PubMed ID: 26775182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information theoretic evaluation of a noiseband-based cochlear implant simulator.
    Aguiar DE; Taylor NE; Li J; Gazanfari DK; Talavage TM; Laflen JB; Neuberger H; Svirsky MA
    Hear Res; 2016 Mar; 333():185-193. PubMed ID: 26409068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting effects of hearing-instrument signal processing on consonant perception.
    Zaar J; Schmitt N; Derleth RP; DiNino M; Arenberg JG; Dau T
    J Acoust Soc Am; 2017 Nov; 142(5):3216. PubMed ID: 29195458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of envelope bandwidth on importance functions for cochlear implant simulations.
    Whitmal NA; DeMaio D; Lin R
    J Acoust Soc Am; 2015 Feb; 137(2):733-44. PubMed ID: 25698008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech perception with interaction-compensated simultaneous stimulation and long pulse durations in cochlear implant users.
    Schatzer R; Koroleva I; Griessner A; Levin S; Kusovkov V; Yanov Y; Zierhofer C
    Hear Res; 2015 Apr; 322():99-106. PubMed ID: 25457654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse-spreading harmonic complex as an alternative carrier for vocoder simulations of cochlear implants.
    Mesnildrey Q; Hilkhuysen G; Macherey O
    J Acoust Soc Am; 2016 Feb; 139(2):986-91. PubMed ID: 26936577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants.
    Nogueira W; Rode T; Büchner A
    J Acoust Soc Am; 2016 Feb; 139(2):728-39. PubMed ID: 26936556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear implant simulator with independent representation of the full spiral ganglion.
    Grange JA; Culling JF; Harris NSL; Bergfeld S
    J Acoust Soc Am; 2017 Nov; 142(5):EL484. PubMed ID: 29195445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adding simultaneous stimulating channels to reduce power consumption in cochlear implants.
    Langner F; Saoji AA; Büchner A; Nogueira W
    Hear Res; 2017 Mar; 345():96-107. PubMed ID: 28104408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway.
    Abbas PJ; Brown CJ
    Hear Res; 2015 Apr; 322():67-76. PubMed ID: 25445817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users.
    Nelson DA; Kreft HA; Anderson ES; Donaldson GS
    J Acoust Soc Am; 2011 Jun; 129(6):3916-33. PubMed ID: 21682414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loudness and pitch perception using Dynamically Compensated Virtual Channels.
    Nogueira W; Litvak LM; Landsberger DM; Büchner A
    Hear Res; 2017 Feb; 344():223-234. PubMed ID: 27939418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MMN as a viable and objective marker of auditory development in CI users.
    Näätänen R; Petersen B; Torppa R; Lonka E; Vuust P
    Hear Res; 2017 Sep; 353():57-75. PubMed ID: 28800468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating multipulse integration as a neural-health correlate in human cochlear-implant users: Relationship to forward-masking recovery.
    Zhou N; Pfingst BE
    J Acoust Soc Am; 2016 Mar; 139(3):EL70-5. PubMed ID: 27036290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vowel identification by cochlear implant users: contributions of static and dynamic spectral cues.
    Donaldson GS; Rogers CL; Cardenas ES; Russell BA; Hanna NH
    J Acoust Soc Am; 2013 Oct; 134(4):3021-8. PubMed ID: 24116437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradual adaptation to auditory frequency mismatch.
    Svirsky MA; Talavage TM; Sinha S; Neuburger H; Azadpour M
    Hear Res; 2015 Apr; 322():163-70. PubMed ID: 25445816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating interaural frequency-place mismatches via bimodal vowel integration.
    Guérit F; Santurette S; Chalupper J; Dau T
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25421087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and evaluation of the Nurotron 26-electrode cochlear implant system.
    Zeng FG; Rebscher SJ; Fu QJ; Chen H; Sun X; Yin L; Ping L; Feng H; Yang S; Gong S; Yang B; Kang HY; Gao N; Chi F
    Hear Res; 2015 Apr; 322():188-99. PubMed ID: 25281795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.
    Krüger B; Büchner A; Nogueira W
    Hear Res; 2017 Sep; 353():185-196. PubMed ID: 28688755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.