BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26775610)

  • 1. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.
    Goldes ME; Jeakins-Cooley ME; McClelland LJ; Mou TC; Bowler BE
    J Inorg Biochem; 2016 May; 158():62-69. PubMed ID: 26775610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation of trimethyllysine 72 to alanine enhances His79-heme-mediated dynamics of iso-1-cytochrome c.
    Cherney MM; Junior CC; Bowler BE
    Biochemistry; 2013 Feb; 52(5):837-46. PubMed ID: 23311346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Protein Stability Does Not Necessarily Increase Local Dynamics.
    McClelland LJ; Bowler BE
    Biochemistry; 2016 May; 55(19):2681-93. PubMed ID: 27104373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of an Ala81His mutation on the Met80 loop dynamics of iso-1-cytochrome c.
    Bandi S; Bowler BE
    Biochemistry; 2015 Mar; 54(9):1729-42. PubMed ID: 25671560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c.
    Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R
    Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of a K72A Mutation on the Structure, Stability, Dynamics, and Peroxidase Activity of Human Cytochrome c.
    Nold SM; Lei H; Mou TC; Bowler BE
    Biochemistry; 2017 Jul; 56(26):3358-3368. PubMed ID: 28598148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humanlike substitutions to Ω-loop D of yeast iso-1-cytochrome c only modestly affect dynamics and peroxidase activity.
    Lei H; Bowler BE
    J Inorg Biochem; 2018 Jun; 183():146-156. PubMed ID: 29530594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Heme Propionate Staples the Structure of Cytochrome
    Deng Y; Weaver ML; Hoke KR; Pletneva EV
    Inorg Chem; 2019 Oct; 58(20):14085-14106. PubMed ID: 31589413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Naturally Occurring Disease-Related Mutations in the 40-57 Ω-Loop of Human Cytochrome c Control Triggering of the Alkaline Isomerization.
    Deacon OM; Svistunenko DA; Moore GR; Wilson MT; Worrall JAR
    Biochemistry; 2018 Jul; 57(29):4276-4288. PubMed ID: 29949346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect on intrinsic peroxidase activity of substituting coevolved residues from Ω-loop C of human cytochrome c into yeast iso-1-cytochrome c.
    Frederick AK; Thompson SL; Vakharia ZM; Cherney MM; Lei H; Evenson G; Bowler BE
    J Inorg Biochem; 2022 Jul; 232():111819. PubMed ID: 35428021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer properties and hydrogen peroxide electrocatalysis of cytochrome c variants at positions 67 and 80.
    Casalini S; Battistuzzi G; Borsari M; Bortolotti CA; Di Rocco G; Ranieri A; Sola M
    J Phys Chem B; 2010 Feb; 114(4):1698-706. PubMed ID: 20058889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a mitochondrial cytochrome c conformer competent for peroxidase activity.
    McClelland LJ; Mou TC; Jeakins-Cooley ME; Sprang SR; Bowler BE
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6648-53. PubMed ID: 24760830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkaline conformational transition and gated electron transfer with a Lys 79 --> his variant of iso-1-cytochrome c.
    Bandi S; Baddam S; Bowler BE
    Biochemistry; 2007 Sep; 46(37):10643-54. PubMed ID: 17713929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence composition effects on denatured state loop formation in iso-1-cytochrome c variants: polyalanine versus polyglycine inserts.
    Tzul FO; Kurchan E; Bowler BE
    J Mol Biol; 2007 Aug; 371(3):577-84. PubMed ID: 17583729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 40s Omega-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c.
    Caroppi P; Sinibaldi F; Santoni E; Howes BD; Fiorucci L; Ferri T; Ascoli F; Smulevich G; Santucci R
    J Biol Inorg Chem; 2004 Dec; 9(8):997-1006. PubMed ID: 15503233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition between reversible aggregation and loop formation in denatured iso-1-cytochrome c.
    Tzul FO; Kurchan E; Roder H; Bowler BE
    Biochemistry; 2009 Jan; 48(2):481-91. PubMed ID: 19113858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring denatured state energetics: deviations from random coil behavior and implications for the folding of iso-1-cytochrome c.
    Godbole S; Hammack B; Bowler BE
    J Mol Biol; 2000 Feb; 296(1):217-28. PubMed ID: 10656828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy studies.
    Abriata LA; Cassina A; Tórtora V; Marín M; Souza JM; Castro L; Vila AJ; Radi R
    J Biol Chem; 2009 Jan; 284(1):17-26. PubMed ID: 18974097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline transition of horse heart cytochrome c in the presence of ZnO nanoparticles.
    Simšíková M; Antalík M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():410-4. PubMed ID: 23174455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.