These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26775860)

  • 21. Context effect: microRNA-10b in cancer cell proliferation, spread and death.
    Gabriely G; Teplyuk NM; Krichevsky AM
    Autophagy; 2011 Nov; 7(11):1384-6. PubMed ID: 21795860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear studies of tumor morphological stability using a two-fluid flow model.
    Pham K; Turian E; Liu K; Li S; Lowengrub J
    J Math Biol; 2018 Sep; 77(3):671-709. PubMed ID: 29546457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking.
    Bonnesœur S; Morin-Grognet S; Thoumire O; Le Cerf D; Boyer O; Vannier JP; Labat B
    J Biomed Mater Res A; 2020 May; 108(5):1256-1268. PubMed ID: 32056374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structured models of cell migration incorporating molecular binding processes.
    Domschke P; Trucu D; Gerisch A; Chaplain MAJ
    J Math Biol; 2017 Dec; 75(6-7):1517-1561. PubMed ID: 28405746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiparameter computational modeling of tumor invasion.
    Bearer EL; Lowengrub JS; Frieboes HB; Chuang YL; Jin F; Wise SM; Ferrari M; Agus DB; Cristini V
    Cancer Res; 2009 May; 69(10):4493-501. PubMed ID: 19366801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating intratumoral heterogeneity from spatiotemporal data.
    Rutter EM; Banks HT; Flores KB
    J Math Biol; 2018 Dec; 77(6-7):1999-2022. PubMed ID: 29737395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breast cancer stem cells, cytokine networks, and the tumor microenvironment.
    Korkaya H; Liu S; Wicha MS
    J Clin Invest; 2011 Oct; 121(10):3804-9. PubMed ID: 21965337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of phenotypic switching on glioblastoma growth and invasion.
    Gerlee P; Nelander S
    PLoS Comput Biol; 2012; 8(6):e1002556. PubMed ID: 22719241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational multiscale model of glioblastoma growth: regulation of cell migration and proliferation via microRNA-451, LKB1 and AMPK.
    Schuetz TA; Becker S; Mang A; Toma A; Buzug TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6620-3. PubMed ID: 23367447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.
    Buttenschön A; Hillen T; Gerisch A; Painter KJ
    J Math Biol; 2018 Jan; 76(1-2):429-456. PubMed ID: 28597056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical modeling of invasive breast carcinoma under a dynamic change in cell phenotype: collective migration of large groups of cells.
    Bratsun DA; Krasnyakov IV; Pismen LM
    Biomech Model Mechanobiol; 2020 Apr; 19(2):723-743. PubMed ID: 31686305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stem Cell Plasticity and Niche Dynamics in Cancer Progression.
    Picco N; Gatenby RA; Anderson ARA
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):528-537. PubMed ID: 28113244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Hybrid Discrete-Continuum Modelling Approach to Explore the Impact of T-Cell Infiltration on Anti-tumour Immune Response.
    Almeida L; Audebert C; Leschiera E; Lorenzi T
    Bull Math Biol; 2022 Oct; 84(12):141. PubMed ID: 36315362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling invasion patterns in the glioblastoma battlefield.
    Conte M; Casas-Tintò S; Soler J
    PLoS Comput Biol; 2021 Jan; 17(1):e1008632. PubMed ID: 33513131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in silico model to demonstrate the effects of Maspin on cancer cell dynamics.
    Al-Mamun MA; Farid DM; Ravenhil L; Hossain MA; Fall C; Bass R
    J Theor Biol; 2016 Jan; 388():37-49. PubMed ID: 26497917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling free tumor growth: Discrete, continuum, and hybrid approaches to interpreting cancer development.
    Singh D; Paquin D
    Math Biosci Eng; 2024 Jul; 21(7):6659-6693. PubMed ID: 39176414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical modeling and quantitative analysis of phenotypic plasticity during tumor evolution based on single-cell data.
    Xiao Y; Zou X
    J Math Biol; 2024 Aug; 89(3):34. PubMed ID: 39162836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale modelling and nonlinear simulation of vascular tumour growth.
    Macklin P; McDougall S; Anderson AR; Chaplain MA; Cristini V; Lowengrub J
    J Math Biol; 2009 Apr; 58(4-5):765-98. PubMed ID: 18781303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bayesian calibration of a stochastic, multiscale agent-based model for predicting in vitro tumor growth.
    Lima EABF; Faghihi D; Philley R; Yang J; Virostko J; Phillips CM; Yankeelov TE
    PLoS Comput Biol; 2021 Nov; 17(11):e1008845. PubMed ID: 34843457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.