BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26775874)

  • 1. Radical Chain Polymerization Catalyzed by Graphene Oxide and Cooperative Hydrogen Bonding.
    Zhu Z; Shi S; Wang H
    Macromol Rapid Commun; 2016 Jan; 37(2):187-94. PubMed ID: 26775874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels.
    Li Z; Shen J; Ma H; Lu X; Shi M; Li N; Ye M
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):1951-7. PubMed ID: 23498217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene enhances the shape memory of poly (acrylamide-co-acrylic acid) grafted on graphene.
    Dong J; Ding J; Weng J; Dai L
    Macromol Rapid Commun; 2013 Apr; 34(8):659-64. PubMed ID: 23585125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting chain transfer to polymer and branching in controlled radical polymerization of butyl acrylate.
    Reyes Y; Asua JM
    Macromol Rapid Commun; 2011 Jan; 32(1):63-7. PubMed ID: 21432971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining Free-Radical Propagation Rate Coefficients with High-Frequency Lasers: Current Status and Future Perspectives.
    Kockler KB; Haehnel AP; Junkers T; Barner-Kowollik C
    Macromol Rapid Commun; 2016 Jan; 37(2):123-34. PubMed ID: 26479174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Termination Mechanism of the Radical Polymerization of Acrylates.
    Nakamura Y; Lee R; Coote ML; Yamago S
    Macromol Rapid Commun; 2016 Mar; 37(6):506-13. PubMed ID: 26800437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous controlled radical polymerization of methyl acrylate in a copper tubular reactor.
    Chan N; Cunningham MF; Hutchinson RA
    Macromol Rapid Commun; 2011 Apr; 32(7):604-9. PubMed ID: 21438060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled aqueous polymerization of acrylamides and acrylates and "in situ" depolymerization in the presence of dissolved CO2.
    Lloyd DJ; Nikolaou V; Collins J; Waldron C; Anastasaki A; Bassett SP; Howdle SM; Blanazs A; Wilson P; Kempe K; Haddleton DM
    Chem Commun (Camb); 2016 May; 52(39):6533-6. PubMed ID: 27111827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Termination Mechanism in the Radical Polymerization of Acrylates.
    Ballard N; Hamzehlou S; Ruipérez F; Asua JM
    Macromol Rapid Commun; 2016 Aug; 37(16):1364-8. PubMed ID: 27328204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization.
    Wang XW; Zhang CA; Wang PL; Zhao J; Zhang W; Ji JH; Hua K; Zhou J; Yang XB; Li XP
    Langmuir; 2012 May; 28(18):7091-5. PubMed ID: 22420718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Functional Groups in the Monomer Molecule on the Radical Polymerization in the Presence of Graphene Oxide. Polymerization of Hydroxyethyl Acrylate under Isothermal and Non-Isothermal Conditions.
    Tsagkalias IS; Achilias DS
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu
    Han Q; Chen L; Li W; Zhou Z; Fang Z; Xu Z; Qian X
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34438-34447. PubMed ID: 30306446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical reinforcement fibers produced by gel-spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites.
    Jiang Z; Li Q; Chen M; Li J; Li J; Huang Y; Besenbacher F; Dong M
    Nanoscale; 2013 Jul; 5(14):6265-9. PubMed ID: 23736640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(acrylic acid)-grafted graphene oxide as an intracellular protein carrier.
    Kavitha T; Kang IK; Park SY
    Langmuir; 2014 Jan; 30(1):402-9. PubMed ID: 24377671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.
    Abdel-Halim ES
    Carbohydr Polym; 2012 Oct; 90(2):930-6. PubMed ID: 22840022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants.
    Sun H; Liu S; Zhou G; Ang HM; Tadé MO; Wang S
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5466-71. PubMed ID: 22967012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization.
    Liu X; Xu Y; Yu J; Li S; Wang J; Wang C; Chu F
    Int J Biol Macromol; 2014 Jun; 67():483-9. PubMed ID: 24742785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A One-Pot Polymerization for Concurrently Inducing Predominant Helicity in Optically Inactive Helical Polymer and Constructing Graphene-Based Chiral Hybrid Foams.
    Li P; Ma Z; Mei S; Pan K; Deng J
    Macromol Rapid Commun; 2019 Jul; 40(13):e1900146. PubMed ID: 31058388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro cytotoxicity evaluation of graphene oxide from the peroxidase-like activity perspective.
    Zhang W; Sun Y; Lou Z; Song L; Wu Y; Gu N; Zhang Y
    Colloids Surf B Biointerfaces; 2017 Mar; 151():215-223. PubMed ID: 28013165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of hydrogen bonding on intramolecular chain transfer in polymerization of acrylates.
    Liang K; Hutchinson RA
    Macromol Rapid Commun; 2011 Jul; 32(14):1090-5. PubMed ID: 21618324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.