These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 26776007)
1. Astringency reduction in red wine by whey proteins. Jauregi P; Olatujoye JB; Cabezudo I; Frazier RA; Gordon MH Food Chem; 2016 May; 199():547-55. PubMed ID: 26776007 [TBL] [Abstract][Full Text] [Related]
2. Whey proteins-polyphenols interactions can be exploited to reduce astringency or increase solubility and stability of bioactives in foods. Jauregi P; Guo Y; Adeloye JB Food Res Int; 2021 Mar; 141():110019. PubMed ID: 33641953 [TBL] [Abstract][Full Text] [Related]
3. The effect of supplementation with three commercial inactive dry yeasts on the colour, phenolic compounds, polysaccharides and astringency of a model wine solution and red wine. González-Royo E; Esteruelas M; Kontoudakis N; Fort F; Canals JM; Zamora F J Sci Food Agric; 2017 Jan; 97(1):172-181. PubMed ID: 26970323 [TBL] [Abstract][Full Text] [Related]
4. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan. Mekoue Nguela J; Poncet-Legrand C; Sieczkowski N; Vernhet A Food Chem; 2016 Nov; 210():671-82. PubMed ID: 27211695 [TBL] [Abstract][Full Text] [Related]
5. New method for evaluating astringency in red wine. Llaudy MC; Canals R; Canals JM; Rozés N; Arola L; Zamora F J Agric Food Chem; 2004 Feb; 52(4):742-6. PubMed ID: 14969525 [TBL] [Abstract][Full Text] [Related]
6. Fining with purified grape pomace. Effect of dose, contact time and varietal origin on the final wine phenolic composition. Jiménez-Martínez MD; Bautista-Ortín AB; Gil-Muñoz R; Gómez-Plaza E Food Chem; 2019 Jan; 271():570-576. PubMed ID: 30236717 [TBL] [Abstract][Full Text] [Related]
7. Toward the optical tongue: flow-through sensing of tannin-protein interactions based on FTIR spectroscopy. Edelmann A; Lendl B J Am Chem Soc; 2002 Dec; 124(49):14741-7. PubMed ID: 12465987 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency. McRae JM; Falconer RJ; Kennedy JA J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019 [TBL] [Abstract][Full Text] [Related]
9. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency. Rinaldi A; Gambuti A; Moio L Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834 [TBL] [Abstract][Full Text] [Related]
10. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency. Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822 [TBL] [Abstract][Full Text] [Related]
11. Tannin quantification in red grapes and wine: comparison of polysaccharide- and protein-based tannin precipitation techniques and their ability to model wine astringency. Mercurio MD; Smith PA J Agric Food Chem; 2008 Jul; 56(14):5528-37. PubMed ID: 18572914 [TBL] [Abstract][Full Text] [Related]
12. Sensory properties of wine tannin fractions: implications for in-mouth sensory properties. McRae JM; Schulkin A; Kassara S; Holt HE; Smith PA J Agric Food Chem; 2013 Jan; 61(3):719-27. PubMed ID: 23289627 [TBL] [Abstract][Full Text] [Related]
13. Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting? Furlan AL; Castets A; Nallet F; Pianet I; Grélard A; Dufourc EJ; Géan J Langmuir; 2014 May; 30(19):5518-26. PubMed ID: 24787144 [TBL] [Abstract][Full Text] [Related]
14. Roles of charge interactions on astringency of whey proteins at low pH. Vardhanabhuti B; Kelly MA; Luck PJ; Drake MA; Foegeding EA J Dairy Sci; 2010 May; 93(5):1890-9. PubMed ID: 20412902 [TBL] [Abstract][Full Text] [Related]
15. Effect of condensed tannins addition on the astringency of red wines. Soares S; Sousa A; Mateus N; de Freitas V Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902 [TBL] [Abstract][Full Text] [Related]
16. Rheological study of tannin and protein interactions based on model systems. Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834 [TBL] [Abstract][Full Text] [Related]
17. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH. Kelly M; Vardhanabhuti B; Luck P; Drake MA; Osborne J; Foegeding EA J Dairy Sci; 2010 May; 93(5):1900-9. PubMed ID: 20412903 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol. Obreque-Slíer E; Peña-Neira A; López-Solís R J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the effect of gelatine, egg albumin and cross-flow microfiltration on the phenolic composition of Pinotage wine. Oberholster A; Carstens LM; du Toit WJ Food Chem; 2013 Jun; 138(2-3):1275-81. PubMed ID: 23411243 [TBL] [Abstract][Full Text] [Related]
20. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine. McRae JM; Ziora ZM; Kassara S; Cooper MA; Smith PA J Agric Food Chem; 2015 May; 63(17):4345-52. PubMed ID: 25877783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]