These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26776087)

  • 1. Molecular Epoxidation Reactions Catalyzed by Rhenium, Molybdenum, and Iron Complexes.
    Kück JW; Reich RM; Kühn FE
    Chem Rec; 2016 Feb; 16(1):349-64. PubMed ID: 26776087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organorhenium(VII) and organomolybdenum(VI) oxides: syntheses and application in olefin epoxidation.
    Kühn FE; Santos AM; Herrmann WA
    Dalton Trans; 2005 Aug; (15):2483-91. PubMed ID: 16025165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. σ-Hole interactions in organometallic catalysts: the case of methyltrioxorhenium(VII).
    Calabrese M; Pizzi A; Daolio A; Frontera A; Resnati G
    Dalton Trans; 2023 Jan; 52(4):1030-1035. PubMed ID: 36602028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regio- and Diastereoselective Catalytic Epoxidation of Acyclic Allylic Alcohols with Methyltrioxorhenium: A Mechanistic Comparison with Metal (Peroxy and Peroxo Complexes) and Nonmetal (Peracids and Dioxirane) Oxidants.
    Adam W; Mitchell CM; Saha-Möller CR
    J Org Chem; 1999 May; 64(10):3699-3707. PubMed ID: 11674500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved methyltrioxorhenium-catalyzed epoxidation of alkenes with hydrogen peroxide.
    Yamazaki S
    Org Biomol Chem; 2007 Jul; 5(13):2109-13. PubMed ID: 17581654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.
    Ye B; Cramer N
    Acc Chem Res; 2015 May; 48(5):1308-18. PubMed ID: 25884306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Facile Liquid Phase Epoxidation of Light Olefins over Heterogeneous Molybdenum Catalysts.
    Yan W; Liu M; Wang J; Shen J; Zhang S; Xu X; Wang S; Ding J; Jin X
    Chem Rec; 2020 Mar; 20(3):230-251. PubMed ID: 31441593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxidation of trans-cyclooctene by Methyltrioxorhenium/H(2)O(2): reaction of trans-epoxide with the monoperoxo complex.
    Adam W; Saha-Moller CR; Weichold O
    J Org Chem; 2000 Aug; 65(16):5001-4. PubMed ID: 10956483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allylic alcohol epoxidation by methyltrioxorhenium: a density functional study on the mechanism and the role of hydrogen bonding.
    Di Valentin C; Gandolfi R; Gisdakis P; Rösch N
    J Am Chem Soc; 2001 Mar; 123(10):2365-76. PubMed ID: 11456886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a general and efficient iron-catalyzed epoxidation with hydrogen peroxide as oxidant.
    Bitterlich B; Anilkumar G; Gelalcha FG; Spilker B; Grotevendt A; Jackstell R; Tse MK; Beller M
    Chem Asian J; 2007 Apr; 2(4):521-9. PubMed ID: 17441190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The promise and challenge of iron-catalyzed cross coupling.
    Sherry BD; Fürstner A
    Acc Chem Res; 2008 Nov; 41(11):1500-11. PubMed ID: 18588321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron vs. ruthenium--a comparison of the stereoselectivity in catalytic olefin epoxidation.
    Benet-Buchholz J; Comba P; Llobet A; Roeser S; Vadivelu P; Wadepohl H; Wiesner S
    Dalton Trans; 2009 Aug; (30):5910-23. PubMed ID: 19623392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, Characterization, and Application of Oxo-Molybdenum(V)-Corrolato Complexes in Epoxidation Reactions.
    Nayak M; Nayak P; Sahu K; Kar S
    J Org Chem; 2020 Sep; 85(18):11654-11662. PubMed ID: 32808776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.
    Wu XF; Fang X; Wu L; Jackstell R; Neumann H; Beller M
    Acc Chem Res; 2014 Apr; 47(4):1041-53. PubMed ID: 24564478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and Mechanism of the Epoxidation of Alkyl-Substituted Alkenes by Hydrogen Peroxide, Catalyzed by Methylrhenium Trioxide.
    Al-Ajlouni AM; Espenson JH
    J Org Chem; 1996 Jun; 61(12):3969-3976. PubMed ID: 11667269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidentate Lewis base adducts of methyltrioxorhenium(VII) and their application in catalytic epoxidation.
    Ferreira P; Xue WM; Bencze E; Herdtweck E; Kühn FE
    Inorg Chem; 2001 Nov; 40(23):5834-41. PubMed ID: 11681894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.
    Bedford RB
    Acc Chem Res; 2015 May; 48(5):1485-93. PubMed ID: 25916260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organogold reactivity with palladium, nickel, and rhodium: transmetalation, cross-coupling, and dual catalysis.
    Hirner JJ; Shi Y; Blum SA
    Acc Chem Res; 2011 Aug; 44(8):603-13. PubMed ID: 21644576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.