These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26776097)

  • 1. Temperature cycle amplitude alters the adult eclosion time and expression pattern of the circadian clock gene period in the onion fly.
    Miyazaki Y; Watari Y; Tanaka K; Goto SG
    J Insect Physiol; 2016 Mar; 86():54-9. PubMed ID: 26776097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weak and strong phase response curves of the onion fly circadian clock at temperature changes of 1 °C and 4 °C.
    Miyazaki Y; Tanaka K; Watari Y
    J Insect Physiol; 2024 May; 154():104618. PubMed ID: 38286255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interacting effect of thermoperiod and photoperiod on the eclosion rhythm in the onion fly, Delia antiqua supports the two-oscillator model.
    Watari Y; Tanaka K
    J Insect Physiol; 2010 Sep; 56(9):1192-7. PubMed ID: 20346949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adult eclosion timing of the onion fly, Delia antiqua, in response to daily cycles of temperature at different soil depths.
    Tanaka K; Watari Y
    Naturwissenschaften; 2003 Feb; 90(2):76-9. PubMed ID: 12590302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity.
    Watari Y
    J Insect Physiol; 2005 Jan; 51(1):11-6. PubMed ID: 15686641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoperiodic regulation of the circadian eclosion rhythm in the flesh fly, Sarcophaga crassipalpis.
    Miyazaki Y; Goto SG; Tanaka K; Saito O; Watari Y
    J Insect Physiol; 2011 Sep; 57(9):1249-58. PubMed ID: 21704630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The onion fly modulates the adult eclosion time in response to amplitude of temperature cycle.
    Tanaka K; Watari Y
    Naturwissenschaften; 2011 Aug; 98(8):711-5. PubMed ID: 21710241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Day-to-day variations in the amplitude of the soil temperature cycle and impact on adult eclosion timing of the onion fly.
    Tanaka K; Watari Y
    Int J Biometeorol; 2017 Jun; 61(6):1011-1016. PubMed ID: 27921173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua.
    Watari Y
    J Insect Physiol; 2002 Jan; 48(1):83-89. PubMed ID: 12770135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly, Sarcophaga crassipalpis.
    Short CA; Meuti ME; Zhang Q; Denlinger DL
    J Insect Physiol; 2016; 93-94():28-35. PubMed ID: 27530303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the effect of thermoperiod.
    Watari Y
    J Insect Physiol; 2002 Sep; 48(9):881-886. PubMed ID: 12770050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental state and the circadian clock interact to influence the timing of eclosion in Drosophila melanogaster.
    Qiu J; Hardin PE
    J Biol Rhythms; 1996 Mar; 11(1):75-86. PubMed ID: 8695895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clock and Hormonal Controls of an Eclosion Gate in the Flesh Fly Sarcophaga crassipalpis.
    Yamamoto M; Nishimura K; Shiga S
    Zoolog Sci; 2017 Apr; 34(2):151-160. PubMed ID: 28397606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis.
    Lankinen P; Forsman P
    J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot,
    Ren S; Hao YJ; Chen B; Yin YP
    G3 (Bethesda); 2018 Jan; 8(1):207-217. PubMed ID: 29158334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of photoperiod on clock gene expression and subcellular distribution of PERIOD in the circadian clock neurons of the blow fly Protophormia terraenovae.
    Muguruma F; Goto SG; Numata H; Shiga S
    Cell Tissue Res; 2010 Jun; 340(3):497-507. PubMed ID: 20396905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily exposure to cold phase-shifts the circadian clock of neonatal rats in vivo.
    Yoshikawa T; Matsuno A; Yamanaka Y; Nishide SY; Honma S; Honma K
    Eur J Neurosci; 2013 Feb; 37(3):491-7. PubMed ID: 23167790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless.
    Goto SG; Han B; Denlinger DL
    J Insect Physiol; 2006; 52(11-12):1213-8. PubMed ID: 17054977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella.
    Kobelková A; Závodská R; Sauman I; Bazalová O; Dolezel D
    J Biol Rhythms; 2015 Apr; 30(2):104-16. PubMed ID: 25637625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupted light-dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity in mice.
    Oishi K; Higo-Yamamoto S; Yamamoto S; Yasumoto Y
    Biochem Biophys Res Commun; 2015 Mar; 458(2):256-61. PubMed ID: 25645021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.