BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26776197)

  • 1. PATIENT-SPECIFIC DATA FUSION FOR CANCER STRATIFICATION AND PERSONALISED TREATMENT.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Pac Symp Biocomput; 2016; 21():321-32. PubMed ID: 26776197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COMPUTING THERAPY FOR PRECISION MEDICINE: COLLABORATIVE FILTERING INTEGRATES AND PREDICTS MULTI-ENTITY INTERACTIONS.
    Regenbogen S; Wilkins AD; Lichtarge O
    Pac Symp Biocomput; 2016; 21():21-32. PubMed ID: 26776170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION.
    Khakabimamaghani S; Ester M
    Pac Symp Biocomput; 2016; 21():345-56. PubMed ID: 26776199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network based stratification of major cancers by integrating somatic mutation and gene expression data.
    He Z; Zhang J; Yuan X; Liu Z; Liu B; Tuo S; Liu Y
    PLoS One; 2017; 12(5):e0177662. PubMed ID: 28520777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DO CANCER CLINICAL TRIAL POPULATIONS TRULY REPRESENT CANCER PATIENTS? A COMPARISON OF OPEN CLINICAL TRIALS TO THE CANCER GENOME ATLAS.
    Geifman N; Butte AJ
    Pac Symp Biocomput; 2016; 21():309-20. PubMed ID: 26776196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unsupervised learning approach to find ovarian cancer genes through integration of biological data.
    Ma C; Chen Y; Wilkins D; Chen X; Zhang J
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S3. PubMed ID: 26328548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative bioinformatic analyses of an oncogenomic profile reveal the biology of endometrial cancer and guide drug discovery.
    Wong HS; Juan YS; Wu MS; Zhang YF; Hsu YW; Chen HH; Liu WM; Chang WC
    Oncotarget; 2016 Feb; 7(5):5909-23. PubMed ID: 26716509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of mutated subnetworks associated with clinical data in cancer.
    Vandin F; Clay P; Upfal E; Raphael BJ
    Pac Symp Biocomput; 2012; ():55-66. PubMed ID: 22174262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-based stratification analysis of 13 major cancer types using mutations in panels of cancer genes.
    Zhong X; Yang H; Zhao S; Shyr Y; Li B
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S7. PubMed ID: 26099277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches.
    Vural S; Wang X; Guda C
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):62. PubMed ID: 27587275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale integration of heterogeneous pharmacogenomic data for identifying drug mechanism of action.
    Luo Y; Wang S; Xiao J; Peng J
    Pac Symp Biocomput; 2018; 23():44-55. PubMed ID: 29218868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RDF SKETCH MAPS - KNOWLEDGE COMPLEXITY REDUCTION FOR PRECISION MEDICINE ANALYTICS.
    Thanintorn N; Wang J; Ersoy I; Al-Taie Z; Jiang Y; Wang D; Verma M; Joshi T; Hammer R; Xu D; Shin D
    Pac Symp Biocomput; 2016; 21():417-28. PubMed ID: 26776205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.