These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26776266)

  • 1. Global analysis on a class of multi-group SEIR model with latency and relapse.
    Wang J; Shu H
    Math Biosci Eng; 2016 Feb; 13(1):209-25. PubMed ID: 26776266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global dynamics of a general class of multi-group epidemic models with latency and relapse.
    Feng X; Teng Z; Zhang F
    Math Biosci Eng; 2015 Feb; 12(1):99-115. PubMed ID: 25811334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse.
    Ren S
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1337-1360. PubMed ID: 29161864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate.
    Huang G; Takeuchi Y; Ma W; Wei D
    Bull Math Biol; 2010 Jul; 72(5):1192-207. PubMed ID: 20091354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model.
    Wang J; Pang J; Liu X
    J Biol Dyn; 2014; 8(1):99-116. PubMed ID: 24963980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate.
    Yang J; Chen Y
    J Biol Dyn; 2018 Dec; 12(1):789-816. PubMed ID: 30317933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility.
    Melnik AV; Korobeinikov A
    Math Biosci Eng; 2013 Apr; 10(2):369-78. PubMed ID: 23458305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global stability analysis of a delayed susceptible-infected-susceptible epidemic model.
    Paulhus C; Wang XS
    J Biol Dyn; 2015; 9 Suppl 1():45-50. PubMed ID: 24978018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global stability for epidemic model with constant latency and infectious periods.
    Huang G; Beretta E; Takeuchi Y
    Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A threshold result for an epidemiological model.
    Lin X; van den Driessche P
    J Math Biol; 1992; 30(6):647-54. PubMed ID: 1640184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion.
    Liu P; Li HX
    Math Biosci Eng; 2020 Oct; 17(6):7248-7273. PubMed ID: 33378896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An application of queuing theory to SIS and SEIS epidemic models.
    Hernandez-Suarez CM; Castillo-Chavez C; Lopez OM; Hernandez-Cuevas K
    Math Biosci Eng; 2010 Oct; 7(4):809-23. PubMed ID: 21077709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global stability analysis of SEIR model with holling type II incidence function.
    Safi MA; Garba SM
    Comput Math Methods Med; 2012; 2012():826052. PubMed ID: 23091562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seir epidemiological model with varying infectivity and infinite delay.
    Röst G; Wu J
    Math Biosci Eng; 2008 Apr; 5(2):389-402. PubMed ID: 18613739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An SEIR epidemic model with constant latency time and infectious period.
    Beretta E; Breda D
    Math Biosci Eng; 2011 Oct; 8(4):931-52. PubMed ID: 21936593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disease control of delay SEIR model with nonlinear incidence rate and vertical transmission.
    Cheng Y; Pan Q; He M
    Comput Math Methods Med; 2013; 2013():830237. PubMed ID: 24416073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global threshold dynamics of an SVIR model with age-dependent infection and relapse.
    Wang J; Lang J; Chen Y
    J Biol Dyn; 2017 Aug; 11(sup2):427-454. PubMed ID: 27593201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global stability of an age-structured epidemic model with general Lyapunov functional.
    Chekroun A; Frioui MN; Kuniya T; Touaoula TM
    Math Biosci Eng; 2019 Feb; 16(3):1525-1553. PubMed ID: 30947431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.