These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26776266)

  • 41. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay.
    McCluskey CC
    Math Biosci Eng; 2009 Jul; 6(3):603-10. PubMed ID: 19566130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epidemic spreading in annealed directed networks: susceptible-infected-susceptible model and contact process.
    Kwon S; Kim Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012813. PubMed ID: 23410394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seasonally varying epidemics with and without latent period: a comparative simulation study.
    Moneim IA
    Math Med Biol; 2007 Mar; 24(1):1-15. PubMed ID: 17317756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A multi-species epidemic model with spatial dynamics.
    Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P
    Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic analysis of an SEIR model with distinct incidence for exposed and infectives.
    Li J; Cui N
    ScientificWorldJournal; 2013; 2013():871393. PubMed ID: 23766718
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of the epidemiological heterogeneity on the outbreak outcomes.
    Macacu A; Bicout DJ
    Math Biosci Eng; 2017 Jun; 14(3):735-754. PubMed ID: 28092961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages.
    Wang X; Liu S
    Math Biosci Eng; 2012 Jul; 9(3):685-95. PubMed ID: 22881032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Global dynamics of an SIRS epidemic model with saturation incidence.
    Hao L; Jiang G; Liu S; Ling L
    Biosystems; 2013 Oct; 114(1):56-63. PubMed ID: 23891842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of heterogeneity on the dynamics of an SEIR epidemic model.
    Shuai Z; van den Driessche P
    Math Biosci Eng; 2012 Apr; 9(2):393-411. PubMed ID: 22901070
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth.
    Thäter M; Chudej K; Pesch HJ
    Math Biosci Eng; 2018 Apr; 15(2):485-505. PubMed ID: 29161846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Global properties of infectious disease models with nonlinear incidence.
    Korobeinikov A
    Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Message passing and moment closure for susceptible-infected-recovered epidemics on finite networks.
    Wilkinson RR; Sharkey KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022808. PubMed ID: 25353535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stability and bifurcations in an epidemic model with varying immunity period.
    Blyuss KB; Kyrychko YN
    Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Global analysis on delay epidemiological dynamic models with nonlinear incidence.
    Huang G; Takeuchi Y
    J Math Biol; 2011 Jul; 63(1):125-39. PubMed ID: 20872265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epidemics with general generation interval distributions.
    Miller JC; Davoudi B; Meza R; Slim AC; Pourbohloul B
    J Theor Biol; 2010 Jan; 262(1):107-15. PubMed ID: 19679141
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sveir epidemiological model with varying infectivity and distributed delays.
    Wang J; Huang G; Takeuchi Y; Liu S
    Math Biosci Eng; 2011 Jul; 8(3):875-88. PubMed ID: 21675816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contact rate calculation for a basic epidemic model.
    Rhodes CJ; Anderson RM
    Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of population heterogeneities upon spread of infection.
    Clancy D; Pearce CJ
    J Math Biol; 2013 Oct; 67(4):963-87. PubMed ID: 22941453
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degree-ordered percolation on a hierarchical scale-free network.
    Lee HK; Shim PS; Noh JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062816. PubMed ID: 25019842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.