These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 26776931)

  • 1. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.
    Hsiao H; Knarr BA; Pohlig RT; Higginson JS; Binder-Macleod SA
    J Biomech; 2016 Feb; 49(3):388-95. PubMed ID: 26776931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms to increase propulsive force for individuals poststroke.
    Hsiao H; Knarr BA; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2015 Apr; 12():40. PubMed ID: 25898145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait.
    Hsiao H; Knarr BA; Higginson JS; Binder-Macleod SA
    Hum Mov Sci; 2015 Feb; 39():212-21. PubMed ID: 25498289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study.
    Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V
    J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immediate improvements in post-stroke gait biomechanics are induced with both real-time limb position and propulsive force biofeedback.
    Santucci V; Alam Z; Liu J; Spencer J; Faust A; Cobb A; Konantz J; Eicholtz S; Wolf S; Kesar TM
    J Neuroeng Rehabil; 2023 Mar; 20(1):37. PubMed ID: 37004111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
    Hsiao H; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Jan; 13():2. PubMed ID: 26767921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke.
    Reisman D; Kesar T; Perumal R; Roos M; Rudolph K; Higginson J; Helm E; Binder-Macleod S
    J Neurol Phys Ther; 2013 Dec; 37(4):159-65. PubMed ID: 24189337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke.
    Hurt CP; Burgess JK; Brown DA
    Gait Posture; 2015 Mar; 41(3):857-9. PubMed ID: 25770079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the effects of real-time propulsive force versus limb angle gait biofeedback on gait biomechanics.
    Liu J; Santucci V; Eicholtz S; Kesar TM
    Gait Posture; 2021 Jan; 83():107-113. PubMed ID: 33129170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms used to increase propulsive forces on a treadmill in older adults.
    Hedrick EA; Parker SM; Hsiao H; Knarr BA
    J Biomech; 2021 Jan; 115():110139. PubMed ID: 33321429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke.
    Awad LN; Hsiao H; Binder-Macleod SA
    J Neurol Phys Ther; 2020 Jan; 44(1):42-48. PubMed ID: 31834220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined user-driven treadmill control and functional electrical stimulation increases walking speeds poststroke.
    Ray NT; Reisman DS; Higginson JS
    J Biomech; 2021 Jul; 124():110480. PubMed ID: 34126560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.
    Awad LN; Reisman DS; Kesar TM; Binder-Macleod SA
    Arch Phys Med Rehabil; 2014 May; 95(5):840-8. PubMed ID: 24378803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization.
    Awad LN; Reisman DS; Pohlig RT; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Sep; 13(1):84. PubMed ID: 27663199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke.
    Burpee JL; Lewek MD
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1102-7. PubMed ID: 26371855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing The Cost of Transport and Increasing Walking Distance After Stroke: A Randomized Controlled Trial on Fast Locomotor Training Combined With Functional Electrical Stimulation.
    Awad LN; Reisman DS; Pohlig RT; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Aug; 30(7):661-70. PubMed ID: 26621366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.