These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26777210)

  • 1. Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis.
    Holade Y; Servat K; Napporn TW; Morais C; Berjeaud JM; Kokoh KB
    ChemSusChem; 2016 Feb; 9(3):252-63. PubMed ID: 26777210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy and chemicals from the selective electrooxidation of renewable diols by organometallic fuel cells.
    Bellini M; Bevilacqua M; Filippi J; Lavacchi A; Marchionni A; Miller HA; Oberhauser W; Vizza F; Annen SP; Grützmacher H
    ChemSusChem; 2014 Sep; 7(9):2432-5. PubMed ID: 25082272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible-light-enhanced electrocatalysis and bioelectrocatalysis coupled in a miniature glucose/air biofuel cell.
    Zhang L; Xu Z; Lou B; Han L; Zhang X; Dong S
    ChemSusChem; 2014 Sep; 7(9):2427-31. PubMed ID: 24961677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.
    Liu W; Mu W; Deng Y
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13558-62. PubMed ID: 25283435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell.
    Guo H; Yin H; Yan X; Shi S; Yu Q; Cao Z; Li J
    Sci Rep; 2016 Dec; 6():39162. PubMed ID: 27966629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.
    Zhao X; Zhu JY
    ChemSusChem; 2016 Jan; 9(2):197-207. PubMed ID: 26692572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity.
    Gomes JF; Gasparotto LH; Tremiliosi-Filho G
    Phys Chem Chem Phys; 2013 Jul; 15(25):10339-49. PubMed ID: 23666524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.
    Wang G; Huang L; Zhang Y
    Biotechnol Lett; 2008 Nov; 30(11):1959-66. PubMed ID: 18612596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymeless multi-sugar fuel cells with high power output based on 3D graphene-Co3O4 hybrid electrodes.
    Chen Y; Prasad KP; Wang X; Pang H; Yan R; Than A; Chan-Park MB; Chen P
    Phys Chem Chem Phys; 2013 Jun; 15(23):9170-6. PubMed ID: 23652812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion-driven proton exchange membrane fuel cell for converting fermenting biomass to electricity.
    Malati P; Mehrotra P; Minoofar P; Mackie DM; Sumner JJ; Ganguli R
    Bioresour Technol; 2015 Oct; 194():394-8. PubMed ID: 26208756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Fabrication of a Dual-Photoelectrode Fuel Cell towards Cost-Effective Electricity Production from Biomass.
    Zhang B; Fan W; Yao T; Liao S; Li A; Li D; Liu M; Shi J; Liao S; Li C
    ChemSusChem; 2017 Jan; 10(1):99-105. PubMed ID: 27860457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs).
    Sharma Y; Li B
    Bioresour Technol; 2010 Mar; 101(6):1844-50. PubMed ID: 19931449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical valorisation of glycerol.
    Simões M; Baranton S; Coutanceau C
    ChemSusChem; 2012 Nov; 5(11):2106-24. PubMed ID: 23112136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules.
    Holade Y; Servat K; Tingry S; Napporn TW; Remita H; Cornu D; Kokoh KB
    Chemphyschem; 2017 Oct; 18(19):2573-2605. PubMed ID: 28732139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantable nonenzymatic glucose/O₂ micro film fuel cells assembled with hierarchical AuZn electrodes.
    Noh HB; Halappa Naveen M; Choi YJ; Choe ES; Shim YB
    Chem Commun (Camb); 2015 Apr; 51(30):6659-62. PubMed ID: 25782606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose.
    Cooray MC; Liu Y; Langford SJ; Bond AM; Zhang J
    Anal Chim Acta; 2015 Jan; 856():27-34. PubMed ID: 25542355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface area expansion of electrodes with grass-like nanostructures and gold nanoparticles to enhance electricity generation in microbial fuel cells.
    Alatraktchi FA; Zhang Y; Noori JS; Angelidaki I
    Bioresour Technol; 2012 Nov; 123():177-83. PubMed ID: 22940316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells.
    Kim JR; Kim JY; Han SB; Park KW; Saratale GD; Oh SE
    Bioresour Technol; 2011 Jan; 102(1):342-7. PubMed ID: 20656480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly ordered mesoporous carbons-based glucose/O2 biofuel cell.
    Zhou M; Deng L; Wen D; Shang L; Jin L; Dong S
    Biosens Bioelectron; 2009 May; 24(9):2904-8. PubMed ID: 19321330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.