These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 26777389)

  • 21. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.
    Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL
    Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convection in nanofluids with a particle-concentration-dependent thermal conductivity.
    Glässl M; Hilt M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046315. PubMed ID: 21599303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond the Maxwell limit: thermal conduction in nanofluids with percolating fluid structures.
    Eapen J; Li J; Yip S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):062501. PubMed ID: 18233882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concentration and size dependence of nano-silver dispersed water based nanofluids.
    Paul G; Sarkar S; Pal T; Das PK; Manna I
    J Colloid Interface Sci; 2012 Apr; 371(1):20-7. PubMed ID: 22284450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface Modification Approach to TiO2 Nanofluids with High Particle Concentration, Low Viscosity, and Electrochemical Activity.
    Sen S; Govindarajan V; Pelliccione CJ; Wang J; Miller DJ; Timofeeva EV
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20538-47. PubMed ID: 26322861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersion and surface characteristics of nanosilica suspensions.
    Kumar R; Milanova D
    Ann N Y Acad Sci; 2009 Apr; 1161():472-83. PubMed ID: 19426340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles.
    Mortuza SM; Kariyawasam LK; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013304. PubMed ID: 26274304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets.
    Yu W; Xie H; Bao D
    Nanotechnology; 2010 Feb; 21(5):055705. PubMed ID: 20023318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermophysical properties of interfacial layer in nanofluids.
    Lee D
    Langmuir; 2007 May; 23(11):6011-8. PubMed ID: 17441736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new stochastic approach for the simulation of agglomeration between colloidal particles.
    Henry C; Minier JP; Pozorski J; Lefèvre G
    Langmuir; 2013 Nov; 29(45):13694-707. PubMed ID: 24111685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanodiamond-based thermal fluids.
    Taha-Tijerina JJ; Narayanan TN; Tiwary CS; Lozano K; Chipara M; Ajayan PM
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4778-85. PubMed ID: 24650328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid.
    Baby TT; Ramaprabhu S
    Nanoscale; 2011 May; 3(5):2208-14. PubMed ID: 21455535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anomalous electrical conductivity of nanoscale colloidal suspensions.
    Chakraborty S; Padhy S
    ACS Nano; 2008 Oct; 2(10):2029-36. PubMed ID: 19206448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of particle clustering on the rheological properties of highly concentrated magnetic nanofluids.
    Susan-Resiga D; Socoliuc V; Boros T; Borbáth T; Marinica O; Han A; Vékás L
    J Colloid Interface Sci; 2012 May; 373(1):110-5. PubMed ID: 22134213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanodiamond nanofluids for enhanced thermal conductivity.
    Branson BT; Beauchamp PS; Beam JC; Lukehart CM; Davidson JL
    ACS Nano; 2013 Apr; 7(4):3183-9. PubMed ID: 23488739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations.
    Teng KL; Hsiao PY; Hung SW; Chieng CC; Liu MS; Lu MC
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3710-8. PubMed ID: 19051928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion.
    Wei F; Zhang JY; Zheng CG
    J Environ Sci (China); 2005; 17(2):335-9. PubMed ID: 16295917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency dependent enhancement of heat transport in a nanofluid with ZnO nanoparticles.
    Neogy RK; Raychaudhuri AK
    Nanotechnology; 2009 Jul; 20(30):305706. PubMed ID: 19584421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.