BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26777586)

  • 1. Cell viability modulation through changes of Ca(2+)-dependent signalling pathways.
    Wójcik-Piotrowicz K; Kaszuba-Zwoińska J; Rokita E; Thor P
    Prog Biophys Mol Biol; 2016 May; 121(1):45-53. PubMed ID: 26777586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time measurement of cytosolic free calcium concentration in Jurkat cells during ELF magnetic field exposure and evaluation of the role of cell cycle.
    McCreary CR; Dixon SJ; Fraher LJ; Carson JJ; Prato FS
    Bioelectromagnetics; 2006 Jul; 27(5):354-64. PubMed ID: 16715520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estradiol effects on intracellular Ca(2+) homeostasis in bovine brain-derived endothelial cells.
    Suman M; Giacomello M; Corain L; Ballarin C; Montelli S; Cozzi B; Peruffo A
    Cell Tissue Res; 2012 Oct; 350(1):109-18. PubMed ID: 22814863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of static and alternating magnetic fields on U937 cell viability.
    Wócik-Piotrowicz K; Kaszuba-Zwoińska J; Rokita E; Thor P; Chrobik P; Nieckarz Z; Michalski J
    Folia Med Cracov; 2014; 54(4):21-33. PubMed ID: 25891240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct intracellular Ca2+-release components act in opposite ways in the regulation of the auxin-dependent MIA biosynthesis in Catharanthus roseus cells.
    Poutrain P; Mazars C; Thiersault M; Rideau M; Pichon O
    J Exp Bot; 2009; 60(4):1387-98. PubMed ID: 19218316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological effects of 6 mT static magnetic fields: a comparative study in different cell types.
    Tenuzzo B; Chionna A; Panzarini E; Lanubile R; Tarantino P; Di Jeso B; Dwikat M; Dini L
    Bioelectromagnetics; 2006 Oct; 27(7):560-77. PubMed ID: 16724329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells.
    Adams DJ; Hill MA
    J Cardiovasc Electrophysiol; 2004 May; 15(5):598-610. PubMed ID: 15149433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 50-Hertz magnetic field and calcium transients in Jurkat cells: results of a research and public information dissemination (RAPID) program study.
    Wey HE; Conover DP; Mathias P; Toraason M; Lotz WG
    Environ Health Perspect; 2000 Feb; 108(2):135-40. PubMed ID: 10656853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic fields promote a pro-survival non-capacitative Ca2+ entry via phospholipase C signaling.
    Cerella C; Cordisco S; Albertini MC; Accorsi A; Diederich M; Ghibelli L
    Int J Biochem Cell Biol; 2011 Mar; 43(3):393-400. PubMed ID: 21095240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of exposure to a time-varying 1.5 T magnetic field on the neurotransmitter-activated increase in intracellular Ca(2+) in relation to actin fiber and mitochondrial functions in bovine adrenal chromaffin cells.
    Ikehara T; Nishisako H; Minami Y; Ichinose Sasaki H; Shiraishi T; Kitamura M; Shono M; Houchi H; Kawazoe K; Minakuchi K; Yoshizaki K; Kinouchi Y; Miyamoto H
    Biochim Biophys Acta; 2010 Dec; 1800(12):1221-30. PubMed ID: 20832450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular and molecular aspects of Ca(2+)-mediated signal transduction in neuronal cells.
    Racay P; Lehotský J
    Gen Physiol Biophys; 1996 Aug; 15(4):273-89. PubMed ID: 9088926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in U937 cell viability induced by stress factors - possible role of calmodulin.
    Wojcik-Piotrowicz K; Kaszuba-Zwoinska J; Rokita E; Nowak B; Thor P
    J Physiol Pharmacol; 2017 Aug; 68(4):629-636. PubMed ID: 29151080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic fibroblast growth factor maintains calcium homeostasis and granulosa cell viability by stimulating calcium efflux via a PKC delta-dependent pathway.
    Peluso JJ; Pappalardo A; Fernandez G
    Endocrinology; 2001 Oct; 142(10):4203-11. PubMed ID: 11564676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of 50 Hz extremely low frequency magnetic field on the morphology and function of boar spermatozoa capacitated in vitro.
    Bernabò N; Tettamanti E; Pistilli MG; Nardinocchi D; Berardinelli P; Mattioli M; Barboni B
    Theriogenology; 2007 Mar; 67(4):801-15. PubMed ID: 17196643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional contribution of calcium ion flux heterogeneity in T cells.
    Christo SN; Diener KR; Hayball JD
    Immunol Cell Biol; 2015 Sep; 93(8):694-704. PubMed ID: 25823995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purinergic signalling-evoked intracellular Ca(2+) concentration changes in the regulation of chondrogenesis and skeletal muscle formation.
    Matta C; Fodor J; Csernoch L; Zákány R
    Cell Calcium; 2016 Mar; 59(2-3):108-16. PubMed ID: 26925979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Spatio-temporal Intracellular Calcium Variations in Plants.
    Mithöfer A; Mazars C; Maffei ME
    Methods Mol Biol; 2009; 479():79-92. PubMed ID: 19083174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex regulation of capsaicin on intracellular second messengers by calcium dependent and independent mechanisms in primary sensory neurons.
    Xu YP; Zhang JW; Li L; Ye ZY; Zhang Y; Gao X; Li F; Yan XS; Liu ZG; Liu LJ; Cao XH
    Neurosci Lett; 2012 May; 517(1):30-5. PubMed ID: 22516465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent signal transduction pathways in plants--phytochrome mechanism of action as an example.
    Tretyn A
    Pol J Pharmacol; 1999; 51(2):145-51. PubMed ID: 10425643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal transduction and ion channels in guard cells.
    MacRobbie EA
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1475-88. PubMed ID: 9800209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.