BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26778173)

  • 1. Vulnerability of microRNA biogenesis in FTD-ALS.
    Eitan C; Hornstein E
    Brain Res; 2016 Sep; 1647():105-111. PubMed ID: 26778173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders.
    Gascon E; Gao FB
    J Neurogenet; 2014; 28(1-2):30-40. PubMed ID: 24506814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS.
    Emde A; Eitan C; Liou LL; Libby RT; Rivkin N; Magen I; Reichenstein I; Oppenheim H; Eilam R; Silvestroni A; Alajajian B; Ben-Dov IZ; Aebischer J; Savidor A; Levin Y; Sons R; Hammond SM; Ravits JM; Möller T; Hornstein E
    EMBO J; 2015 Nov; 34(21):2633-51. PubMed ID: 26330466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes.
    Kawahara Y; Mieda-Sato A
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3347-52. PubMed ID: 22323604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis.
    Kim YK; Kim B; Kim VN
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1881-9. PubMed ID: 26976605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models.
    Nolan M; Talbot K; Ansorge O
    Acta Neuropathol Commun; 2016 Sep; 4(1):99. PubMed ID: 27600654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia.
    Jovičić A; Paul JW; Gitler AD
    J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of A Negative Feedback Network Between TDP-43 and miRNAs Dependent on TDP-43 Nuclear Localization.
    Hawley ZCE; Campos-Melo D; Strong MJ
    J Mol Biol; 2020 Dec; 432(24):166695. PubMed ID: 33137311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
    Weishaupt JH; Hyman T; Dikic I
    Trends Mol Med; 2016 Sep; 22(9):769-783. PubMed ID: 27498188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.
    Mackenzie IR; Rademakers R; Neumann M
    Lancet Neurol; 2010 Oct; 9(10):995-1007. PubMed ID: 20864052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is amyotrophic lateral sclerosis/frontotemporal dementia an autophagy disease?
    Deng Z; Sheehan P; Chen S; Yue Z
    Mol Neurodegener; 2017 Dec; 12(1):90. PubMed ID: 29282133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TAR DNA binding protein-43 and fused in sarcoma/translocated in liposarcoma protein in two neurodegenerative diseases.
    Wang XN; Cui LY
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2012 Jun; 34(3):286-92. PubMed ID: 22776664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis.
    Rinchetti P; Rizzuti M; Faravelli I; Corti S
    Mol Neurobiol; 2018 Mar; 55(3):2617-2630. PubMed ID: 28421535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration?
    Sternburg EL; Gruijs da Silva LA; Dormann D
    Trends Biochem Sci; 2022 Jan; 47(1):6-22. PubMed ID: 34366183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia.
    Archbold HC; Jackson KL; Arora A; Weskamp K; Tank EM; Li X; Miguez R; Dayton RD; Tamir S; Klein RL; Barmada SJ
    Sci Rep; 2018 Mar; 8(1):4606. PubMed ID: 29545601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment.
    Morlando M; Dini Modigliani S; Torrelli G; Rosa A; Di Carlo V; Caffarelli E; Bozzoni I
    EMBO J; 2012 Dec; 31(24):4502-10. PubMed ID: 23232809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TDP-43 and FUS en route from the nucleus to the cytoplasm.
    Ederle H; Dormann D
    FEBS Lett; 2017 Jun; 591(11):1489-1507. PubMed ID: 28380257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UBQLN2/P62 cellular recycling pathways in amyotrophic lateral sclerosis and frontotemporal dementia.
    Fecto F; Siddique T
    Muscle Nerve; 2012 Feb; 45(2):157-62. PubMed ID: 22246868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex.
    Kawai S; Amano A
    J Cell Biol; 2012 Apr; 197(2):201-8. PubMed ID: 22492723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic Homeostasis Disruption in a Novel Frontotemporal Dementia Mouse Model Expressing Cytoplasmic Fused in Sarcoma.
    Shiihashi G; Ito D; Arai I; Kobayashi Y; Hayashi K; Otsuka S; Nakajima K; Yuzaki M; Itohara S; Suzuki N
    EBioMedicine; 2017 Oct; 24():102-115. PubMed ID: 28928015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.