BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26778353)

  • 1. Membrane-mediated aggregation of anisotropically curved nanoparticles.
    Olinger AD; Spangler EJ; Kumar PB; Laradji M
    Faraday Discuss; 2016; 186():265-75. PubMed ID: 26778353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations.
    Risselada HJ; Marrink SJ
    Phys Chem Chem Phys; 2009 Mar; 11(12):2056-67. PubMed ID: 19280016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent aggregation of hydrophobic nanoparticles in lipid membranes.
    Lavagna E; Barnoud J; Rossi G; Monticelli L
    Nanoscale; 2020 May; 12(17):9452-9461. PubMed ID: 32328605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of C60 fullerenes with asymmetric and curved lipid membranes: a molecular dynamics study.
    Cherniavskyi YK; Ramseyer C; Yesylevskyy SO
    Phys Chem Chem Phys; 2016 Jan; 18(1):278-84. PubMed ID: 26608905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles.
    Shen Z; Loe DT; Awino JK; Kröger M; Rouge JL; Li Y
    Nanoscale; 2016 Aug; 8(31):14821-35. PubMed ID: 27452209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.
    Li Z; Gorfe AA
    Nanoscale; 2015 Jan; 7(2):814-24. PubMed ID: 25438167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle induced fusion of lipid membranes.
    Blasco S; Sukeník L; Vácha R
    Nanoscale; 2024 May; 16(21):10221-10229. PubMed ID: 38679949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes.
    Van Lehn RC; Ricci M; Silva PH; Andreozzi P; Reguera J; Voïtchovsky K; Stellacci F; Alexander-Katz A
    Nat Commun; 2014 Jul; 5():4482. PubMed ID: 25042518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discontinuous wrapping transition of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Laradji M
    J Chem Phys; 2020 Mar; 152(10):104902. PubMed ID: 32171223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling nanoparticle wrapping or translocation in bilayer membranes.
    Curtis EM; Bahrami AH; Weikl TR; Hall CK
    Nanoscale; 2015 Sep; 7(34):14505-14. PubMed ID: 26260123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spherical nanoparticle supported lipid bilayers for the structural study of membrane geometry-sensitive molecules.
    Fu R; Gill RL; Kim EY; Briley NE; Tyndall ER; Xu J; Li C; Ramamurthi KS; Flanagan JM; Tian F
    J Am Chem Soc; 2015 Nov; 137(44):14031-14034. PubMed ID: 26488086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and disruption of lipid bilayers by nanoscale protein aggregates.
    Hirano A; Yoshikawa H; Matsushita S; Yamada Y; Shiraki K
    Langmuir; 2012 Feb; 28(8):3887-95. PubMed ID: 22276744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction modes between nanosized graphene flakes and liposomes: Adsorption, insertion and membrane fusion.
    Santiago R; Reigada R
    Biochim Biophys Acta Gen Subj; 2019 Apr; 1863(4):723-731. PubMed ID: 30716365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-lipid tracking on nanoscale membrane buds: The effects of curvature on lipid diffusion and sorting.
    Woodward X; Stimpson EE; Kelly CV
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2064-2075. PubMed ID: 29856992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models.
    Das M; Dahal U; Mesele O; Liang D; Cui Q
    J Phys Chem B; 2019 Dec; 123(49):10547-10561. PubMed ID: 31675790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.