BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 26778749)

  • 1. Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling.
    Hamilton PW; Sun Y; Henry JJ
    Exp Eye Res; 2016 Apr; 145():206-215. PubMed ID: 26778749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinative role of Wnt signals in dorsal iris-derived lens regeneration in newt eye.
    Hayashi T; Mizuno N; Takada R; Takada S; Kondoh H
    Mech Dev; 2006 Nov; 123(11):793-800. PubMed ID: 17030116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frizzled-10, up-regulated in primary colorectal cancer, is a positive regulator of the WNT - beta-catenin - TCF signaling pathway.
    Terasaki H; Saitoh T; Shiokawa K; Katoh M
    Int J Mol Med; 2002 Feb; 9(2):107-12. PubMed ID: 11786918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redundant expression of canonical Wnt ligands in human breast cancer cell lines.
    Benhaj K; Akcali KC; Ozturk M
    Oncol Rep; 2006 Mar; 15(3):701-7. PubMed ID: 16465433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-depth characterization of the Wnt-signaling/β-catenin pathway in an in vitro model of Barrett's sequence.
    Götzel K; Chemnitzer O; Maurer L; Dietrich A; Eichfeld U; Lyros O; Moulla Y; Niebisch S; Mehdorn M; Jansen-Winkeln B; Vieth M; Hoffmeister A; Gockel I; Thieme R
    BMC Gastroenterol; 2019 Mar; 19(1):38. PubMed ID: 30841855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoic acid regulation by CYP26 in vertebrate lens regeneration.
    Thomas AG; Henry JJ
    Dev Biol; 2014 Feb; 386(2):291-301. PubMed ID: 24384390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the impact of Frizzled receptors in Wnt/β-catenin signaling of human mesenchymal stem cells.
    Kolben T; Peröbner I; Fernsebner K; Lechner F; Geissler C; Ruiz-Heinrich L; Capovilla S; Jochum M; Neth P
    Biol Chem; 2012 Dec; 393(12):1433-47. PubMed ID: 23152409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT.
    Bisson JA; Mills B; Paul Helt JC; Zwaka TP; Cohen ED
    Dev Biol; 2015 Feb; 398(1):80-96. PubMed ID: 25482987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells.
    Perry KJ; Thomas AG; Henry JJ
    Dev Biol; 2013 Feb; 374(2):281-94. PubMed ID: 23274420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis.
    Henry JJ; Elkins MB
    Dev Genes Evol; 2001 Sep; 211(8-9):377-87. PubMed ID: 11685571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional mutations of beta-catenin and APC reveal roles for canonical Wnt signaling in lens differentiation.
    Martinez G; Wijesinghe M; Turner K; Abud HE; Taketo MM; Noda T; Robinson ML; de Iongh RU
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4794-806. PubMed ID: 19515997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration.
    Yokoyama H; Ogino H; Stoick-Cooper CL; Grainger RM; Moon RT
    Dev Biol; 2007 Jun; 306(1):170-8. PubMed ID: 17442299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of WNT7A in human normal tissues and cancer, and regulation of WNT7A and WNT7B in human cancer.
    Kirikoshi H; Katoh M
    Int J Oncol; 2002 Oct; 21(4):895-900. PubMed ID: 12239632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling.
    Day RC; Beck CW
    BMC Dev Biol; 2011 Sep; 11():54. PubMed ID: 21896182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue interactions and lens-forming competence in the outer cornea of larval Xenopus laevis.
    Cannata SM; Arresta E; Bernardini S; Gargioli C; Filoni S
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):161-71. PubMed ID: 12975804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia.
    Wada N; Hashinaga T; Otabe S; Yuan X; Kurita Y; Kakino S; Ohoki T; Nakayama H; Fukutani T; Tajiri Y; Yamada K
    PLoS One; 2013; 8(7):e67712. PubMed ID: 23861788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lens regenerative competency of limbal vs. central regions of mature Xenopus cornea epithelium.
    Hamilton PW; Henry JJ
    Exp Eye Res; 2016 Nov; 152():94-99. PubMed ID: 27569373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development.
    Mizuno N; Mochii M; Yamamoto TS; Takahashi TC; Eguchi G; Okada TS
    Differentiation; 1999 Nov; 65(3):141-9. PubMed ID: 10631811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sfrp1 and Sfrp2 are not involved in Wnt/β-catenin signal silencing during lens induction but are required for maintenance of Wnt/β-catenin signaling in lens epithelial cells.
    Sugiyama Y; Shelley EJ; Wen L; Stump RJ; Shimono A; Lovicu FJ; McAvoy JW
    Dev Biol; 2013 Dec; 384(2):181-93. PubMed ID: 24140542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinative roles of FGF and Wnt signals in iris-derived lens regeneration in newt eye.
    Hayashi T; Mizuno N; Kondoh H
    Dev Growth Differ; 2008 May; 50(4):279-87. PubMed ID: 18336581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.