These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26779035)

  • 1. Supernormal Conduction and Suppression of Spatially Discordant Alternans of Cardiac Action Potentials.
    Jing L; Agarwal A; Patwardhan A
    Front Physiol; 2015; 6():407. PubMed ID: 26779035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of short term memory and conduction velocity restitution in alternans formation.
    Wei N; Mori Y; Tolkacheva EG
    J Theor Biol; 2015 Feb; 367():21-28. PubMed ID: 25435411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K(+)](o).
    de Lange E; Kucera JP
    Biophys J; 2010 Apr; 98(7):1129-38. PubMed ID: 20371312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue.
    Qu Z; Garfinkel A; Chen PS; Weiss JN
    Circulation; 2000 Oct; 102(14):1664-70. PubMed ID: 11015345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects.
    Cherry EM; Fenton FH
    Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2332-41. PubMed ID: 14751863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias.
    Banville I; Gray RA
    J Cardiovasc Electrophysiol; 2002 Nov; 13(11):1141-9. PubMed ID: 12475106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of spatiotemporal heterogeneity of cellular restitution in mechanism of arrhythmogenic discordant alternans.
    Pastore JM; Laurita KR; Rosenbaum DS
    Heart Rhythm; 2006 Jun; 3(6):711-9. PubMed ID: 16731476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restitution analysis of alternans using dynamic pacing and its comparison with S1S2 restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts.
    Tse G; Wong ST; Tse V; Yeo JM
    Biomed Rep; 2016 Jun; 4(6):673-680. PubMed ID: 27284405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
    Goldhaber JI; Xie LH; Duong T; Motter C; Khuu K; Weiss JN
    Circ Res; 2005 Mar; 96(4):459-66. PubMed ID: 15662034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of conduction velocity restitution and short-term memory in the development of action potential duration alternans in isolated rabbit hearts.
    Mironov S; Jalife J; Tolkacheva EG
    Circulation; 2008 Jul; 118(1):17-25. PubMed ID: 18559701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Premature beats elicit a phase reversal of mechanoelectrical alternans in cat ventricular myocytes. A possible mechanism for reentrant arrhythmias.
    Rubenstein DS; Lipsius SL
    Circulation; 1995 Jan; 91(1):201-14. PubMed ID: 7805204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of discordant T wave alternans in the in vivo heart.
    Chinushi M; Kozhevnikov D; Caref EB; Restivo M; El-Sherif N
    J Cardiovasc Electrophysiol; 2003 Jun; 14(6):632-8. PubMed ID: 12875425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supernormal conduction in cardiac tissue promotes concordant alternans and action potential bunching.
    Echebarria B; Röder G; Engel H; Davidsen J; Bär M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):040902. PubMed ID: 21599107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for discordant alternans.
    Watanabe MA; Fenton FH; Evans SJ; Hastings HM; Karma A
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):196-206. PubMed ID: 11232619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions.
    Carro J; Rodríguez JF; Laguna P; Pueyo E
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1954):4205-32. PubMed ID: 21969673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pharmacological gap junction and sodium channel blockade on S1S2 restitution properties in Langendorff-perfused mouse hearts.
    Tse G; Liu T; Li G; Keung W; Yeo JM; Fiona Chan YW; Yan BP; Chan YS; Wong SH; Li RA; Zhao J; Wu WKK; Wong WT
    Oncotarget; 2017 Oct; 8(49):85341-85352. PubMed ID: 29156723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially Discordant Repolarization Alternans in the Absence of Conduction Velocity Restitution.
    Huang C; Song Z; Landaw J; Qu Z
    Biophys J; 2020 May; 118(10):2574-2587. PubMed ID: 32101718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the effects of memory and action potential duration alternans on cardiac restitution using a constant-memory restitution protocol.
    Jordan PN; Christini DJ
    Physiol Meas; 2004 Aug; 25(4):1013-24. PubMed ID: 15382838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of spatially discordant repolarization alternans in cardiac tissue.
    Huang C; Song Z; Di Z; Qu Z
    Chaos; 2020 Dec; 30(12):123141. PubMed ID: 33380024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation.
    Koller ML; Riccio ML; Gilmour RF
    Am J Physiol; 1998 Nov; 275(5):H1635-42. PubMed ID: 9815071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.