These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26779701)

  • 1. A Computer Modeling Study to Evaluate the Potential Effect of Air Cell-based Cushions on the Tissues of Bariatric and Diabetic Patients.
    Levy A; Kopplin K; Gefen A
    Ostomy Wound Manage; 2016 Jan; 62(1):22-30. PubMed ID: 26779701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulations of efficacy of air-cell-based cushions in protecting against reoccurrence of pressure ulcers.
    Levy A; Kopplin K; ; Gefen A
    J Rehabil Res Dev; 2014; 51(8):1297-319. PubMed ID: 25625315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep tissue loads in the seated buttocks on an off-loading wheelchair cushion versus air-cell-based and foam cushions: finite element studies.
    Peko Cohen L; Gefen A
    Int Wound J; 2017 Dec; 14(6):1327-1334. PubMed ID: 29024413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An air-cell-based cushion for pressure ulcer protection remarkably reduces tissue stresses in the seated buttocks with respect to foams: finite element studies.
    Levy A; Kopplin K; Gefen A
    J Tissue Viability; 2014 Feb; 23(1):13-23. PubMed ID: 24405723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of skin and subcutaneous tissue loading in the buttocks while regaining weight-bearing after a push-up in wheelchair users.
    Levy A; Kopplin K; Gefen A
    J Mech Behav Biomed Mater; 2013 Dec; 28():436-47. PubMed ID: 23706990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer Modeling Studies to Assess Whether a Prophylactic Dressing Reduces the Risk for Deep Tissue Injury in the Heels of Supine Patients with Diabetes.
    Levy A; Gefen A
    Ostomy Wound Manage; 2016 Apr; 62(4):42-52. PubMed ID: 27065218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress analyses coupled with damage laws to determine biomechanical risk factors for deep tissue injury during sitting.
    Linder-Ganz E; Gefen A
    J Biomech Eng; 2009 Jan; 131(1):011003. PubMed ID: 19045919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is obesity a risk factor for deep tissue injury in patients with spinal cord injury?
    Elsner JJ; Gefen A
    J Biomech; 2008 Dec; 41(16):3322-31. PubMed ID: 19026415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional computer model of the human buttocks, in vivo.
    Todd BA; Thacker JG
    J Rehabil Res Dev; 1994; 31(2):111-9. PubMed ID: 7965867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time finite element monitoring of sub-dermal tissue stresses in individuals with spinal cord injury: toward prevention of pressure ulcers.
    Linder-Ganz E; Yarnitzky G; Yizhar Z; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2009 Feb; 37(2):387-400. PubMed ID: 19034666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach.
    Linder-Ganz E; Shabshin N; Itzchak Y; Gefen A
    J Biomech; 2007; 40(7):1443-54. PubMed ID: 16920122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contoured Foam Cushions Cannot Provide Long-term Protection Against Pressure-Ulcers for Individuals with a Spinal Cord Injury: Modeling Studies.
    Shoham N; Levy A; Kopplin K; Gefen A
    Adv Skin Wound Care; 2015 Jul; 28(7):303-16. PubMed ID: 26080017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue changes in patients following spinal cord injury and implications for wheelchair cushions and tissue loading: a literature review.
    Gefen A
    Ostomy Wound Manage; 2014 Feb; 60(2):34-45. PubMed ID: 24515983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective observational study of single- or multi-compartment pressure ulcer prevention cushions: PRESCAROH project.
    Meaume S; Marty M; Colin D
    J Wound Care; 2017 Sep; 26(9):537-544. PubMed ID: 28880757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D finite-element modeling of air-cell-based cushions and buttock tissues during prolonged sitting.
    Yu C; Sacris JM; Gai Y; Lei CH
    Comput Biol Med; 2022 Mar; 142():105229. PubMed ID: 35051853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method to generate a patient-specific finite element model of the human buttocks.
    Wagnac EL; Aubin CE; Dansereau J
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):774-83. PubMed ID: 18270016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure to internal muscle tissue loads under the ischial tuberosities during sitting is elevated at abnormally high or low body mass indices.
    Sopher R; Nixon J; Gorecki C; Gefen A
    J Biomech; 2010 Jan; 43(2):280-6. PubMed ID: 19762029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of weight-bearing MRI for evaluating wheelchair cushions based on internal soft-tissue deformations under ischial tuberosities.
    Shabshin N; Zoizner G; Herman A; Ougortsin V; Gefen A
    J Rehabil Res Dev; 2010; 47(1):31-42. PubMed ID: 20437325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of intramuscular fat infiltration, scarring, and spasticity on the risk for sitting-acquired deep tissue injury in spinal cord injury patients.
    Sopher R; Nixon J; Gorecki C; Gefen A
    J Biomech Eng; 2011 Feb; 133(2):021011. PubMed ID: 21280883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strains and stresses in sub-dermal tissues of the buttocks are greater in paraplegics than in healthy during sitting.
    Linder-Ganz E; Shabshin N; Itzchak Y; Yizhar Z; Siev-Ner I; Gefen A
    J Biomech; 2008; 41(3):567-80. PubMed ID: 18054024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.