These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26779795)

  • 1. Targeted, Activity-Dependent Spinal Stimulation Produces Long-Lasting Motor Recovery in Chronic Cervical Spinal Cord Injury.
    Ozpinar A; Tempel ZJ; Monaco EA
    Neurosurgery; 2016 Feb; 78(2):N18-9. PubMed ID: 26779795
    [No Abstract]   [Full Text] [Related]  

  • 2. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury.
    McPherson JG; Miller RR; Perlmutter SI
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12193-8. PubMed ID: 26371306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehabilitation: Boost for movement.
    Nudo RJ
    Nature; 2015 Nov; 527(7578):314-5. PubMed ID: 26581287
    [No Abstract]   [Full Text] [Related]  

  • 4. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury.
    Gonzalez-Rothi EJ; Lee KZ
    Exp Neurol; 2021 Aug; 342():113751. PubMed ID: 33974878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury.
    Torres-Espín A; Forero J; Fenrich KK; Lucas-Osma AM; Krajacic A; Schmidt E; Vavrek R; Raposo P; Bennett DJ; Popovich PG; Fouad K
    Brain; 2018 Jul; 141(7):1946-1962. PubMed ID: 29860396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.
    Hormigo KM; Zholudeva LV; Spruance VM; Marchenko V; Cote MP; Vinit S; Giszter S; Bezdudnaya T; Lane MA
    Exp Neurol; 2017 Jan; 287(Pt 2):276-287. PubMed ID: 27582085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury.
    Sandhu MS; Perez MA; Oudega M; Mitchell GS; Rymer WZ
    Exp Neurol; 2021 Aug; 342():113722. PubMed ID: 33932397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The challenges of respiratory motor system recovery following cervical spinal cord injury.
    Warren PM; Alilain WJ
    Prog Brain Res; 2014; 212():173-220. PubMed ID: 25194199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function.
    Smith AC; Knikou M
    Neural Plast; 2016; 2016():1216258. PubMed ID: 27293901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of 5-HT
    Lee KZ; Gonzalez-Rothi EJ
    Respir Physiol Neurobiol; 2017 Oct; 244():51-55. PubMed ID: 28711602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury.
    Samejima S; Henderson R; Pradarelli J; Mondello SE; Moritz CT
    Exp Neurol; 2022 Nov; 357():114178. PubMed ID: 35878817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord injury: there is nothing permanent except change (Heraclitus, 540-480 BC).
    Nistri A; Saccavini M
    Brain Res Bull; 2009 Jan; 78(1):2-3. PubMed ID: 18929626
    [No Abstract]   [Full Text] [Related]  

  • 14. The present special issue on Gait recovery after spinal cord injury. Editorial.
    Molinari M; Scivoletto G
    Brain Res Bull; 2009 Jan; 78(1):1. PubMed ID: 18929627
    [No Abstract]   [Full Text] [Related]  

  • 15. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training and anti-CSPG combination therapy for spinal cord injury.
    García-Alías G; Fawcett JW
    Exp Neurol; 2012 May; 235(1):26-32. PubMed ID: 21946272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of training on upper limb function after cervical spinal cord injury: a systematic review.
    Lu X; Battistuzzo CR; Zoghi M; Galea MP
    Clin Rehabil; 2015 Jan; 29(1):3-13. PubMed ID: 25575932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.
    Gill LC; Gransee HM; Sieck GC; Mantilla CB
    Respir Physiol Neurobiol; 2016 Jun; 226():128-36. PubMed ID: 26506253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery.
    Mondello SE; Sunshine MD; Fischedick AE; Moritz CT; Horner PJ
    J Neurotrauma; 2015 Dec; 32(24):1994-2007. PubMed ID: 25929319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.