BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26779953)

  • 1. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.
    Scheuble N; Geue T; Kuster S; Adamcik J; Mezzenga R; Windhab EJ; Fischer P
    Langmuir; 2016 Feb; 32(5):1396-404. PubMed ID: 26779953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking Gastric Lipase Adsorption and Displacement Processes with Viscoelastic Biopolymer Adsorption Layers.
    Scheuble N; Lussi M; Geue T; Carrière F; Fischer P
    Biomacromolecules; 2016 Oct; 17(10):3328-3337. PubMed ID: 27635994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored interfacial rheology for gastric stable adsorption layers.
    Scheuble N; Geue T; Windhab EJ; Fischer P
    Biomacromolecules; 2014 Aug; 15(8):3139-45. PubMed ID: 25029559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature responsive surface layers of modified celluloses.
    Bodvik R; Thormann E; Karlson L; Claesson PM
    Phys Chem Chem Phys; 2011 Mar; 13(10):4260-8. PubMed ID: 21246125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging.
    Stanimirova RD; Gurkov TD; Kralchevsky PA; Balashev KT; Stoyanov SD; Pelan EG
    Langmuir; 2013 May; 29(20):6053-67. PubMed ID: 23611592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.
    Pérez-Mosqueda LM; Maldonado-Valderrama J; Ramírez P; Cabrerizo-Vílchez MA; Muñoz J
    Colloids Surf B Biointerfaces; 2013 Nov; 111():171-8. PubMed ID: 23807126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and Interfacial Layer Structure of Unmodified Nanocrystalline Cellulose at Air/Water Interfaces.
    Bertsch P; Diener M; Adamcik J; Scheuble N; Geue T; Mezzenga R; Fischer P
    Langmuir; 2018 Dec; 34(50):15195-15202. PubMed ID: 30433788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic and viscoelastic interfacial behavior of β-lactoglobulin microgels of varying sizes at fluid interfaces.
    Murphy RW; Farkas BE; Jones OG
    J Colloid Interface Sci; 2016 Mar; 466():12-9. PubMed ID: 26701187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the elasticity of pharmaceutical materials on the interfacial mechanical strength of bilayer tablets.
    Busignies V; Mazel V; Diarra H; Tchoreloff P
    Int J Pharm; 2013 Nov; 457(1):260-7. PubMed ID: 24055440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dilatational rheology of beta-casein adsorbed layers at liquid-fluid interfaces.
    Maldonado-Valderrama J; Fainerman VB; Galvez-Ruiz MJ; Martín-Rodriguez A; Cabrerizo-Vílchez MA; Miller R
    J Phys Chem B; 2005 Sep; 109(37):17608-16. PubMed ID: 16853253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects.
    Innis-Samson VA; Sakurai K
    J Phys Condens Matter; 2011 Nov; 23(43):435010. PubMed ID: 21983327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation of modified celluloses in aqueous solution: transition from methylcellulose to hydroxypropylmethylcellulose solution properties induced by a low-molecular-weight oxyethylene additive.
    Bodvik R; Karlson L; Edwards K; Eriksson J; Thormann E; Claesson PM
    Langmuir; 2012 Sep; 28(38):13562-9. PubMed ID: 22931403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Interactions between a Silica Sphere and Deformable Interfaces in Organic Solvents Studied by Atomic Force Microscopy.
    Kuznicki NP; Harbottle D; Masliyah J; Xu Z
    Langmuir; 2016 Sep; 32(38):9797-806. PubMed ID: 27482923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties.
    Wang JM; Xia N; Yang XQ; Yin SW; Qi JR; He XT; Yuan DB; Wang LJ
    J Agric Food Chem; 2012 Mar; 60(12):3302-10. PubMed ID: 22372478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance of interfacial viscoelasticity in stability and conformation of biomolecular organizates at air/fluid interface.
    Antony M S; Jaganathan M; Dhathathreyan A
    Adv Colloid Interface Sci; 2016 Aug; 234():80-88. PubMed ID: 27174489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites.
    Khoshkava V; Kamal MR
    Biomacromolecules; 2013 Sep; 14(9):3155-63. PubMed ID: 23927495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.
    Danov KD; Kralchevsky PA; Radulova GM; Basheva ES; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2015 Aug; 222():148-61. PubMed ID: 24828304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.