These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26779991)

  • 1. On the reliability of peptide nonplanarity seen in ultra-high resolution crystal structures.
    Brereton AE; Karplus PA
    Protein Sci; 2016 Apr; 25(4):926-32. PubMed ID: 26779991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of non-planar peptide groups in protein crystal structures.
    Dasgupta AK; Majumdar R; Bhattacharyya D
    Indian J Biochem Biophys; 2004 Oct; 41(5):233-40. PubMed ID: 22900279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On interpretation of protein X-ray structures: Planarity of the peptide unit.
    Chellapa GD; Rose GD
    Proteins; 2015 Sep; 83(9):1687-92. PubMed ID: 26148341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonplanar peptide bonds in proteins are common and conserved but not biased toward active sites.
    Berkholz DS; Driggers CM; Shapovalov MV; Dunbrack RL; Karplus PA
    Proc Natl Acad Sci U S A; 2012 Jan; 109(2):449-53. PubMed ID: 22198840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein imperfections: separating intrinsic from extrinsic variation of torsion angles.
    Butterfoss GL; Richardson JS; Hermans J
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):88-98. PubMed ID: 15608380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement.
    Moriarty NW; Tronrud DE; Adams PD; Karplus PA
    FEBS J; 2014 Sep; 281(18):4061-71. PubMed ID: 24890778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.
    Mao B; Tejero R; Baker D; Montelione GT
    J Am Chem Soc; 2014 Feb; 136(5):1893-906. PubMed ID: 24392845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deviations from planarity of the peptide bond in peptides and proteins.
    MacArthur MW; Thornton JM
    J Mol Biol; 1996 Dec; 264(5):1180-95. PubMed ID: 9000639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher peptide nonplanarity (ω) close to protein carboxy-terminal and its positive correlation with ψ dihedral-angle is evolved conferring protein thermostability.
    Maiti S; Panja AS; Bandopadhyay B
    Prog Biophys Mol Biol; 2019 Aug; 145():1-9. PubMed ID: 30359669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide.
    Diaz-Avalos R; Long C; Fontano E; Balbirnie M; Grothe R; Eisenberg D; Caspar DL
    J Mol Biol; 2003 Jul; 330(5):1165-75. PubMed ID: 12860136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Who checks the checkers? Four validation tools applied to eight atomic resolution structures. EU 3-D Validation Network.
    J Mol Biol; 1998 Feb; 276(2):417-36. PubMed ID: 9512713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PDZ2 domain of syntenin at ultra-high resolution: bridging the gap between macromolecular and small molecule crystallography.
    Kang BS; Devedjiev Y; Derewenda U; Derewenda ZS
    J Mol Biol; 2004 Apr; 338(3):483-93. PubMed ID: 15081807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy.
    Ulmer TS; Ramirez BE; Delaglio F; Bax A
    J Am Chem Soc; 2003 Jul; 125(30):9179-91. PubMed ID: 15369375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyramidalization of backbone carbonyl carbon atoms in proteins.
    Esposito L; Vitagliano L; Zagari A; Mazzarella L
    Protein Sci; 2000 Oct; 9(10):2038-42. PubMed ID: 11106179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine off-kilter: guanidinium is not as planar as restraints denote.
    Moriarty NW; Liebschner D; Tronrud DE; Adams PD
    Acta Crystallogr D Struct Biol; 2020 Dec; 76(Pt 12):1159-1166. PubMed ID: 33263321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide bond distortions from planarity: new insights from quantum mechanical calculations and peptide/protein crystal structures.
    Improta R; Vitagliano L; Esposito L
    PLoS One; 2011; 6(9):e24533. PubMed ID: 21949726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures.
    Jelsch C; Pichon-Pesme V; Lecomte C; Aubry A
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1306-18. PubMed ID: 10089507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the possibility of the observation of valence electron density for individual bonds in proteins in conventional difference maps.
    Afonine PV; Lunin VY; Muzet N; Urzhumtsev A
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):260-74. PubMed ID: 14747702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Resolution Refinement of Atomic Models Against Crystallographic Data.
    Nicholls RA; Kovalevskiy O; Murshudov GN
    Methods Mol Biol; 2017; 1607():565-593. PubMed ID: 28573589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A geometry force field which converts low-resolution X-ray models to structures with properties found at ultra high resolution.
    McMartin C
    Protein Sci; 2012 Jan; 21(1):75-83. PubMed ID: 22057834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.