These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 26780256)

  • 21. High richness and dense seeding enhance grassland restoration establishment but have little effect on drought response.
    Carter DL; Blair JM
    Ecol Appl; 2012 Jun; 22(4):1308-19. PubMed ID: 22827137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intra-annual rainfall regime shifts competitive interactions between coastal sage scrub and invasive grasses.
    Goldstein LJ; Suding KN
    Ecology; 2014 Feb; 95(2):425-35. PubMed ID: 24669735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated carbon dioxide and warming impact silicon and phenolic-based defences differently in native and exotic grasses.
    Johnson SN; Hartley SE
    Glob Chang Biol; 2018 Sep; 24(9):3886-3896. PubMed ID: 29105229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The carbon fertilization effect over a century of anthropogenic CO
    Drake BL; Hanson DT; Lowrey TK; Sharp ZD
    Glob Chang Biol; 2017 Feb; 23(2):782-792. PubMed ID: 27483457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.
    Zwicke M; Alessio GA; Thiery L; Falcimagne R; Baumont R; Rossignol N; Soussana JF; Picon-Cochard C
    Glob Chang Biol; 2013 Nov; 19(11):3435-48. PubMed ID: 23832449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prolonged warming and drought modify belowground interactions for water among coexisting plants.
    Grossiord C; Sevanto S; Bonal D; Borrego I; Dawson TE; Ryan M; Wang W; McDowell NG
    Tree Physiol; 2019 Jan; 39(1):55-63. PubMed ID: 30215810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An invasive legume increases perennial grass biomass: An indirect pathway for plant community change.
    Fill JM; Pearson E; Knight TM; Crandall RM
    PLoS One; 2019; 14(1):e0211295. PubMed ID: 30682179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disentangling root responses to climate change in a semiarid grassland.
    Carrillo Y; Dijkstra FA; LeCain D; Morgan JA; Blumenthal D; Waldron S; Pendall E
    Oecologia; 2014 Jun; 175(2):699-711. PubMed ID: 24643718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological invasions and climate change amplify each other's effects on dryland degradation.
    Ravi S; Law DJ; Caplan JS; Barron-Gafford GA; Dontsova KM; Espeleta JF; Villegas JC; Okin GS; Breshears DD; Huxman TE
    Glob Chang Biol; 2022 Jan; 28(1):285-295. PubMed ID: 34614285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.
    Tietjen B; Schlaepfer DR; Bradford JB; Lauenroth WK; Hall SA; Duniway MC; Hochstrasser T; Jia G; Munson SM; Pyke DA; Wilson SD
    Glob Chang Biol; 2017 Jul; 23(7):2743-2754. PubMed ID: 27976449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Greater impact of extreme drought on photosynthesis of grasslands exposed to a warmer climate in spite of acclimation.
    Zavalloni C; Gielen B; De Boeck HJ; Lemmens CM; Ceulemans R; Nijs I
    Physiol Plant; 2009 May; 136(1):57-72. PubMed ID: 19374719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses.
    Balachowski JA; Bristiel PM; Volaire FA
    Ann Bot; 2016 Aug; 118(2):357-68. PubMed ID: 27325898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?
    Seabloom EW; Borer ET; Buckley Y; Cleland EE; Davies K; Firn J; Harpole WS; Hautier Y; Lind E; MacDougall A; Orrock JL; Prober SM; Adler P; Alberti J; Anderson TM; Bakker JD; Biederman LA; Blumenthal D; Brown CS; Brudvig LA; Caldeira M; Chu C; Crawley MJ; Daleo P; Damschen EI; D'Antonio CM; DeCrappeo NM; Dickman CR; Du G; Fay PA; Frater P; Gruner DS; Hagenah N; Hector A; Helm A; Hillebrand H; Hofmockel KS; Humphries HC; Iribarne O; Jin VL; Kay A; Kirkman KP; Klein JA; Knops JM; La Pierre KJ; Ladwig LM; Lambrinos JG; Leakey AD; Li Q; Li W; McCulley R; Melbourne B; Mitchell CE; Moore JL; Morgan J; Mortensen B; O'Halloran LR; Pärtel M; Pascual J; Pyke DA; Risch AC; Salguero-Gómez R; Sankaran M; Schuetz M; Simonsen A; Smith M; Stevens C; Sullivan L; Wardle GM; Wolkovich EM; Wragg PD; Wright J; Yang L
    Glob Chang Biol; 2013 Dec; 19(12):3677-87. PubMed ID: 24038796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.
    Cusack DF; Lee JK; McCleery TL; LeCroy CS
    Glob Chang Biol; 2015 Dec; 21(12):4481-96. PubMed ID: 26297074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems.
    Hoover DL; Duniway MC; Belnap J
    Oecologia; 2015 Dec; 179(4):1211-21. PubMed ID: 26254259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels.
    Zinta G; AbdElgawad H; Domagalska MA; Vergauwen L; Knapen D; Nijs I; Janssens IA; Beemster GT; Asard H
    Glob Chang Biol; 2014 Dec; 20(12):3670-85. PubMed ID: 24802996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of elevated CO2 and drought on soil microbial communities associated with Andropogon gerardii.
    Kassem II; Joshi P; Sigler V; Heckathorn S; Wang Q
    J Integr Plant Biol; 2008 Nov; 50(11):1406-15. PubMed ID: 19017128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO
    Collins L; Bradstock RA; Resco de Dios V; Duursma RA; Velasco S; Boer MM
    Glob Chang Biol; 2018 Jun; 24(6):2366-2376. PubMed ID: 29316074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photosynthetic capacity to plant growth.
    Jiang Y; Xu Z; Zhou G; Liu T
    BMC Plant Biol; 2016 Jul; 16(1):157. PubMed ID: 27405416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses.
    Hager HA; Ryan GD; Kovacs HM; Newman JA
    BMC Ecol; 2016 May; 16():28. PubMed ID: 27246099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.