BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 26780409)

  • 1. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland.
    Deo RC; Şahin M
    Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.
    Deo RC; Downs N; Parisi AV; Adamowski JF; Quilty JM
    Environ Res; 2017 May; 155():141-166. PubMed ID: 28222363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Yangtze River streamflow based on deep learning neural network with El Niño-Southern Oscillation.
    Ha S; Liu D; Mu L
    Sci Rep; 2021 Jun; 11(1):11738. PubMed ID: 34083594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning models for streamflow regionalization in a tropical watershed.
    Ferreira RG; Silva DDD; Elesbon AAA; Fernandes-Filho EI; Veloso GV; Fraga MS; Ferreira LB
    J Environ Manage; 2021 Feb; 280():111713. PubMed ID: 33257181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-century tree-ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment.
    Mokria M; Gebrekirstos A; Abiyu A; Van Noordwijk M; Bräuning A
    Glob Chang Biol; 2017 Dec; 23(12):5436-5454. PubMed ID: 28712116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling streamflow driven by climate change in data-scarce mountainous basins.
    Fan M; Xu J; Chen Y; Li W
    Sci Total Environ; 2021 Oct; 790():148256. PubMed ID: 34111792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling water quality in an urban river using hydrological factors--data driven approaches.
    Chang FJ; Tsai YH; Chen PA; Coynel A; Vachaud G
    J Environ Manage; 2015 Mar; 151():87-96. PubMed ID: 25544251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree-ring-based reconstruction of streamflow for the Zaqu River in the Lancang River source region, China, over the past 419 years.
    Xiao D; Shao X; Qin N; Huang X
    Int J Biometeorol; 2017 Jul; 61(7):1173-1189. PubMed ID: 28035469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea.
    Yi HS; Park S; An KG; Kwak KC
    Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30248912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India.
    Reddy NM; Saravanan S; Paneerselvam B
    Environ Res; 2024 Jun; 250():118403. PubMed ID: 38365058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explainable deep learning for insights in El Niño and river flows.
    Liu Y; Duffy K; Dy JG; Ganguly AR
    Nat Commun; 2023 Jan; 14(1):339. PubMed ID: 36670105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms.
    Sharma E; Deo RC; Prasad R; Parisi AV
    Sci Total Environ; 2020 Mar; 709():135934. PubMed ID: 31869708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the impacts of climate change on streamflow dynamics: A machine learning perspective.
    Khan M; Khan AU; Khan S; Khan FA
    Water Sci Technol; 2023 Nov; 88(9):2309-2331. PubMed ID: 37966185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.
    Preethi B; Sabin TP; Adedoyin JA; Ashok K
    Sci Rep; 2015 Nov; 5():16653. PubMed ID: 26567458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced machine learning model for better prediction accuracy of soil temperature at different depths.
    Alizamir M; Kisi O; Ahmed AN; Mert C; Fai CM; Kim S; Kim NW; El-Shafie A
    PLoS One; 2020; 15(4):e0231055. PubMed ID: 32287272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated metaheuristic algorithms with extreme learning machine models for river streamflow prediction.
    Van Thieu N; Nguyen NH; Sherif M; El-Shafie A; Ahmed AN
    Sci Rep; 2024 Jun; 14(1):13597. PubMed ID: 38866871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.