These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26780542)

  • 1. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus.
    Liu Y; Huang Z; Zhou F; Lei X; Yao B; Meng G; Mao Q
    Nanoscale; 2016 May; 8(20):10607-14. PubMed ID: 26780542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes.
    Cao J; Zhao D; Qin Y
    Talanta; 2019 Mar; 194():895-902. PubMed ID: 30609621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method.
    Zhou F; Liu Y; Wang H; Wei Y; Zhang G; Ye H; Chen M; Ling D
    Opt Express; 2020 Mar; 28(5):6648-6662. PubMed ID: 32225908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Silver Nano-Dendrites on Optical Fibre Core by Laser-Induced Method for Surface-Enhanced Raman Scattering Applications.
    Pham TB; Nguyen VC; Pham VH; Bui H; Coisson R; Pham VH; Vu DC
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1928-1935. PubMed ID: 31492363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method.
    Fan Q; Cao J; Liu Y; Yao B; Mao Q
    Appl Opt; 2013 Sep; 52(25):6163-9. PubMed ID: 24085073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper.
    Cao J; Zhao D; Mao Q
    Analyst; 2017 Feb; 142(4):596-602. PubMed ID: 28128376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote SERS detection at a 10-m scale using silica fiber SERS probes coupled with a convolutional neural network.
    Huang J; Zhou F; Cai C; Chu R; Zhang Z; Liu Y
    Opt Lett; 2023 Feb; 48(4):896-899. PubMed ID: 36790969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry.
    Fan M; Andrade GF; Brolo AG
    Anal Chim Acta; 2011 May; 693(1-2):7-25. PubMed ID: 21504806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical fibre-tip probes for SERS: numerical study for design considerations.
    Hutter T; Elliott SR; Mahajan S
    Opt Express; 2018 Jun; 26(12):15539-15550. PubMed ID: 30114813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive SERS detection in a non-volatile liquid-phase system with nanocluster-patterned optical fiber SERS probes.
    Wang B; Liu Y; Ai C; Chu R; Chen M; Ye H; Wang H; Zhou F
    Opt Express; 2022 May; 30(10):15846-15857. PubMed ID: 36221441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of gold nanoparticle arrays for efficient surface-enhanced Raman scattering.
    Wang Y; Chen H; Wang E
    Nanotechnology; 2008 Mar; 19(10):105604. PubMed ID: 21817706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A portable microcolumn based on silver nanoparticle functionalized glass fibers and its SERS application.
    Gu HX; Li DW; Xue L; Zhang YF; Long YT
    Analyst; 2015 Dec; 140(23):7934-8. PubMed ID: 26488907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Step Fabrication of High-Throughput Surface-Enhanced Raman Scattering Substrates.
    Zeng Y; Du X; Gao B; Liu B; Xie Z; Gu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4222-4232. PubMed ID: 29297223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable fiber sensors based on surface-enhanced Raman scattering.
    Yang X; Tanaka Z; Newhouse R; Xu Q; Chen B; Chen S; Zhang JZ; Gu C
    Rev Sci Instrum; 2010 Dec; 81(12):123103. PubMed ID: 21198010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering.
    Yang X; Ileri N; Larson CC; Carlson TC; Britten JA; Chang AS; Gu C; Bond TC
    Opt Express; 2012 Oct; 20(22):24819-26. PubMed ID: 23187247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.