These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 26780689)
1. A simple protocol for attenuating the auto-fluorescence of cyanobacteria for optimized fluorescence in situ hybridization (FISH) imaging. Zeller P; Ploux O; Méjean A J Microbiol Methods; 2016 Mar; 122():16-9. PubMed ID: 26780689 [TBL] [Abstract][Full Text] [Related]
2. 16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization. Mikš-Krajnik M; Babuchowski A Lett Appl Microbiol; 2014 Sep; 59(3):320-7. PubMed ID: 24814284 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence in situ hybridization of Microcystis strains producing microcystin using specific mRNA probes. Zeller P; Méjean A; Biegala I; Contremoulins V; Ploux O Lett Appl Microbiol; 2016 Nov; 63(5):376-383. PubMed ID: 27538762 [TBL] [Abstract][Full Text] [Related]
4. A CARD-FISH protocol for the identification and enumeration of cyanobacterial akinetes in lake sediments. Ramm J; Lupu A; Hadas O; Ballot A; Rücker J; Wiedner C; Sukenik A FEMS Microbiol Ecol; 2012 Oct; 82(1):23-36. PubMed ID: 22537189 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous quantification of cyanobacteria and Microcystis spp. using real-time PCR. Oh KH; Jeong DH; Shin SH; Cho YC J Microbiol Biotechnol; 2012 Feb; 22(2):248-55. PubMed ID: 22370358 [TBL] [Abstract][Full Text] [Related]
6. Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol. Weerasekara ML; Ryuda N; Miyamoto H; Okumura T; Ueno D; Inoue K; Someya T J Microbiol Methods; 2013 Jun; 93(3):177-84. PubMed ID: 23523967 [TBL] [Abstract][Full Text] [Related]
7. Identification of Staphylococcus carnosus and Staphylococcus warneri isolated from meat by fluorescent in situ hybridization with 16S rRNA-targeted oligonucleotide probes. Gory L; Millet L; Godon JJ; Montel MC Syst Appl Microbiol; 1999 May; 22(2):225-8. PubMed ID: 10390873 [TBL] [Abstract][Full Text] [Related]
8. In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes. Schönhuber W; Zarda B; Eix S; Rippka R; Herdman M; Ludwig W; Amann R Appl Environ Microbiol; 1999 Mar; 65(3):1259-67. PubMed ID: 10049892 [TBL] [Abstract][Full Text] [Related]
9. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Hoshino T; Yilmaz LS; Noguera DR; Daims H; Wagner M Appl Environ Microbiol; 2008 Aug; 74(16):5068-77. PubMed ID: 18552182 [TBL] [Abstract][Full Text] [Related]
10. Quantification of Leuconostoc populations in mixed dairy starter cultures using fluorescence in situ hybridization. Olsen KN; Brockmann E; Molin S J Appl Microbiol; 2007 Oct; 103(4):855-63. PubMed ID: 17897187 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence in situ hybridization for detection of classical propionibacteria with specific 16S rRNA-targeted probes and its application to enumeration in Gruyère cheese. Babot JD; Hidalgo M; Argañaraz-Martínez E; Apella MC; Perez Chaia A Int J Food Microbiol; 2011 Jan; 145(1):221-8. PubMed ID: 21276635 [TBL] [Abstract][Full Text] [Related]
12. A novel fluorescent in situ hybridization technique for detection of Rickettsia spp. in archival samples. Svendsen CB; Boye M; Struve C; Krogfelt KA J Microbiol Methods; 2009 Mar; 76(3):301-4. PubMed ID: 19007824 [TBL] [Abstract][Full Text] [Related]
13. An update and optimisation of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridisation (FISH). Crocetti G; Murto M; Björnsson L J Microbiol Methods; 2006 Apr; 65(1):194-201. PubMed ID: 16126291 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples. Wu Q; Li Y; Wang M; Pan XP; Tang YF J Microbiol Methods; 2010 Nov; 83(2):175-8. PubMed ID: 20807557 [TBL] [Abstract][Full Text] [Related]
15. Specific detection of Pseudomonas spp. in milk by fluorescence in situ hybridization using ribosomal RNA directed probes. Gunasekera TS; Dorsch MR; Slade MB; Veal DA J Appl Microbiol; 2003; 94(5):936-45. PubMed ID: 12694460 [TBL] [Abstract][Full Text] [Related]
16. Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH). Urzì C; La Cono V; Stackebrandt E Environ Microbiol; 2004 Jul; 6(7):678-85. PubMed ID: 15186346 [TBL] [Abstract][Full Text] [Related]
17. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. Yilmaz S; Haroon MF; Rabkin BA; Tyson GW; Hugenholtz P ISME J; 2010 Oct; 4(10):1352-6. PubMed ID: 20505753 [TBL] [Abstract][Full Text] [Related]
18. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498 [TBL] [Abstract][Full Text] [Related]
19. The effect of nucleobase-specific fluorescence quenching on in situ hybridization with rRNA-targeted oligonucleotide probes. Behrens S; Fuchs BM; Amann R Syst Appl Microbiol; 2004 Sep; 27(5):565-72. PubMed ID: 15490558 [TBL] [Abstract][Full Text] [Related]
20. Rapid identification of Burkholderia pseudomallei and Burkholderia mallei by fluorescence in situ hybridization (FISH) from culture and paraffin-embedded tissue samples. Hagen RM; Frickmann H; Elschner M; Melzer F; Neubauer H; Gauthier YP; Racz P; Poppert S Int J Med Microbiol; 2011 Nov; 301(7):585-90. PubMed ID: 21658996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]