These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 26780689)
21. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Schramm A; Fuchs BM; Nielsen JL; Tonolla M; Stahl DA Environ Microbiol; 2002 Nov; 4(11):713-20. PubMed ID: 12460279 [TBL] [Abstract][Full Text] [Related]
22. Simultaneous detection and differentiation of Staphylococcus species in blood cultures using fluorescence in situ hybridization. Wang P Med Princ Pract; 2010; 19(3):218-21. PubMed ID: 20357507 [TBL] [Abstract][Full Text] [Related]
23. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH). Kubota K; Ohashi A; Imachi H; Harada H J Microbiol Methods; 2006 Sep; 66(3):521-8. PubMed ID: 16545875 [TBL] [Abstract][Full Text] [Related]
25. Assessment of the microbiota of a mixed infection of the tongue using phenotypic and genotypic methods simultaneously and a review of the literature. Veloo AC; Schepers RH; Welling GW; Degener JE Anaerobe; 2011 Apr; 17(2):47-51. PubMed ID: 21458578 [TBL] [Abstract][Full Text] [Related]
26. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Stoecker K; Dorninger C; Daims H; Wagner M Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029 [TBL] [Abstract][Full Text] [Related]
27. Detection of Tissue-resident Bacteria in Bladder Biopsies by 16S rRNA Fluorescence In Situ Hybridization. Neugent ML; Gadhvi J; Palmer KL; Zimmern PE; De Nisco NJ J Vis Exp; 2019 Oct; (152):. PubMed ID: 31680675 [TBL] [Abstract][Full Text] [Related]
28. Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. Lücker S; Steger D; Kjeldsen KU; MacGregor BJ; Wagner M; Loy A J Microbiol Methods; 2007 Jun; 69(3):523-8. PubMed ID: 17408790 [TBL] [Abstract][Full Text] [Related]
29. Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Meier H; Amann R; Ludwig W; Schleifer KH Syst Appl Microbiol; 1999 May; 22(2):186-96. PubMed ID: 10390869 [TBL] [Abstract][Full Text] [Related]
30. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe. Braun B; Richert I; Szewzyk U J Microbiol Methods; 2009 Oct; 79(1):37-43. PubMed ID: 19638289 [TBL] [Abstract][Full Text] [Related]
31. [Studies on fluorescence in situ hybridization with group-specific 16S rRNA-based probes in analysis of human colonic microflora]. Zhong Y; Huang C; Yin W; Vonk RJ; Harmsen HM Wei Sheng Yan Jiu; 2003 May; 32(3):232-5. PubMed ID: 12914287 [TBL] [Abstract][Full Text] [Related]
32. Design of species-specific oligonucleotide probes for the detection of Bacteroides and Parabacteroides by fluorescence in situ hybridization and their application to the analysis of mouse caecal Bacteroides-Parabacteroides microbiota. Momose Y; Park SH; Miyamoto Y; Itoh K J Appl Microbiol; 2011 Jul; 111(1):176-84. PubMed ID: 21535330 [TBL] [Abstract][Full Text] [Related]
33. Development and application of oligonucleotide probes for in situ detection of thermotolerant Campylobacter in chicken faecal and liver samples. Schmid MW; Lehner A; Stephan R; Schleifer KH; Meier H Int J Food Microbiol; 2005 Nov; 105(2):245-55. PubMed ID: 16061298 [TBL] [Abstract][Full Text] [Related]
34. FISH in Suspension or in Adherent Cells. Di Pippo F; Queirós D; Pereira J; Lemos PC; Serafim LS; Rossetti S Methods Mol Biol; 2021; 2246():51-67. PubMed ID: 33576982 [TBL] [Abstract][Full Text] [Related]
35. Fluorescence in situ hybridization for the identification of environmental microbes. Pernthaler A; Pernthaler J Methods Mol Biol; 2007; 353():153-64. PubMed ID: 17332640 [TBL] [Abstract][Full Text] [Related]
36. Design and performance of a 16S rRNA-targeted oligonucleotide probe for detection of members of the genus Bdellovibrio by fluorescence in situ hybridization. Mahmoud KK; McNeely D; Elwood C; Koval SF Appl Environ Microbiol; 2007 Nov; 73(22):7488-93. PubMed ID: 17905886 [TBL] [Abstract][Full Text] [Related]
37. Let them fly or light them up: matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and fluorescence in situ hybridization (FISH). Schweickert B; Moter A; Lefmann M; Göbel UB APMIS; 2004; 112(11-12):856-85. PubMed ID: 15638841 [TBL] [Abstract][Full Text] [Related]
38. A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization. O'Sullivan C; Burrell PC; Clarke WP; Blackall LL J Appl Microbiol; 2007 Oct; 103(4):1332-43. PubMed ID: 17897237 [TBL] [Abstract][Full Text] [Related]
39. High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry. Tang YZ; Gin KY; Lim TH Appl Environ Microbiol; 2005 Dec; 71(12):8157-64. PubMed ID: 16332798 [TBL] [Abstract][Full Text] [Related]
40. An Introduction to Fluorescence in situ Hybridization in Microorganisms. Almeida C; Azevedo NF Methods Mol Biol; 2021; 2246():1-15. PubMed ID: 33576979 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]