These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26780801)

  • 21. Analyses using VR/AR visualization.
    Weidlich D; Scherer S; Wabner M
    IEEE Comput Graph Appl; 2008; 28(5):84-6. PubMed ID: 18753038
    [No Abstract]   [Full Text] [Related]  

  • 22. Virtual reality software and technology.
    Lin MC; Otaduy MA; Boulic R
    IEEE Comput Graph Appl; 2008; 28(6):18-9. PubMed ID: 19004681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing Virtual Reality Visualizations for Unsteady Flow Analysis of Dinosaur Track Formation using Scientific Sketching.
    Novotny J; Tveite J; Turner ML; Gatesy S; Drury F; Falkingham P; Laidlaw DH
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):2145-2154. PubMed ID: 30908229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transforming clinical imaging data for virtual reality learning objects.
    Trelease RB; Rosset A
    Anat Sci Educ; 2008; 1(2):50-5. PubMed ID: 19177381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A user interface for VR-ready 3D medical imaging by off-the-shelf input devices.
    Gallo L; Minutolo A; De Pietro G
    Comput Biol Med; 2010 Mar; 40(3):350-8. PubMed ID: 20149912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How three-dimensional sketching environments affect spatial thinking: A functional magnetic resonance imaging study of virtual reality.
    Tung YH; Chang CY
    PLoS One; 2024; 19(3):e0294451. PubMed ID: 38466671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modelling language (VRML).
    Yu ZY; Zheng SS; Chen LT; He XQ; Wang JJ
    J Zhejiang Univ Sci B; 2005 Jul; 6(7):611-6. PubMed ID: 15973760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Depth-fused 3D imagery on an immaterial display.
    Lee C; Diverdi S; Höllerer T
    IEEE Trans Vis Comput Graph; 2009; 15(1):20-33. PubMed ID: 19008553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CliniSpace: a multiperson 3D online immersive training environment accessible through a browser.
    Dev P; Heinrichs WL; Youngblood P
    Stud Health Technol Inform; 2011; 163():173-9. PubMed ID: 21335784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain virtual dissection and white matter 3D visualization.
    Serres B; Zemmoura I; Andersson F; Tauber C; Destrieux C; Venturini G
    Stud Health Technol Inform; 2013; 184():392-6. PubMed ID: 23400190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporating 3D body motions into large-sized freeform surface conceptual design.
    Qin S; Wright DK; Kang J; Prieto PA
    Biomed Sci Instrum; 2005; 41():271-6. PubMed ID: 15850117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D virtual reality vs. 2D desktop registration user interface comparison.
    Bueckle A; Buehling K; Shih PC; Börner K
    PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of visual realism on search tasks in mixed reality simulation.
    Lee C; Rincon GA; Meyer G; Höllerer T; Bowman DA
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):547-56. PubMed ID: 23428438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time global illumination for VR applications.
    Mortensen J; Yu I; Khanna P; Tecchia F; Spanlang B; Marino G; Slater M
    IEEE Comput Graph Appl; 2008; 28(6):56-64. PubMed ID: 19004685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HTC Vive MeVisLab integration via OpenVR for medical applications.
    Egger J; Gall M; Wallner J; Boechat P; Hann A; Li X; Chen X; Schmalstieg D
    PLoS One; 2017; 12(3):e0173972. PubMed ID: 28323840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A lightweight tangible 3D interface for interactive visualization of thin fiber structures.
    Jackson B; Lau TY; Schroeder D; Toussaint KC; Keefe DF
    IEEE Trans Vis Comput Graph; 2013 Dec; 19(12):2802-9. PubMed ID: 24051847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual reality for 3D histology: multi-scale visualization of organs with interactive feature exploration.
    Liimatainen K; Latonen L; Valkonen M; Kartasalo K; Ruusuvuori P
    BMC Cancer; 2021 Oct; 21(1):1133. PubMed ID: 34686173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscape, a data-driven 3D real-time interactive virtual cell environment.
    Kadir SR; Lilja A; Gunn N; Strong C; Hughes RT; Bailey BJ; Rae J; Parton RG; McGhee J
    Elife; 2021 Jun; 10():. PubMed ID: 34191720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Swordplay: innovating game development through VR.
    Katzourin M; Ignatoff D; Quirk L; LaViola JJ; Jenkins OC
    IEEE Comput Graph Appl; 2006; 26(6):15-9. PubMed ID: 17120909
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.