These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 26780809)
1. Examining Rotation Gain in CAVE-like Virtual Environments. Freitag S; Weyers B; Kuhlen TW IEEE Trans Vis Comput Graph; 2016 Apr; 22(4):1462-71. PubMed ID: 26780809 [TBL] [Abstract][Full Text] [Related]
2. Estimation of detection thresholds for redirected walking techniques. Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112 [TBL] [Abstract][Full Text] [Related]
4. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation. Ragan ED; Scerbo S; Bacim F; Bowman DA IEEE Trans Vis Comput Graph; 2017 Aug; 23(8):1880-1895. PubMed ID: 28113630 [TBL] [Abstract][Full Text] [Related]
5. Head movements and simulator sickness generated by a virtual environment. Walker AD; Muth ER; Switzer FS; Hoover A Aviat Space Environ Med; 2010 Oct; 81(10):929-34. PubMed ID: 20922884 [TBL] [Abstract][Full Text] [Related]
6. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking. Schmitz P; Hildebrandt J; Valdez AC; Kobbelt L; Ziefle M IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1623-1632. PubMed ID: 29543179 [TBL] [Abstract][Full Text] [Related]
7. The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display: reducing apparent latency with predictive compensation. Buker TJ; Vincenzi DA; Deaton JE Hum Factors; 2012 Apr; 54(2):235-49. PubMed ID: 22624290 [TBL] [Abstract][Full Text] [Related]
8. Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Draper MH; Viire ES; Furness TA; Gawron VJ Hum Factors; 2001; 43(1):129-46. PubMed ID: 11474759 [TBL] [Abstract][Full Text] [Related]
9. Estimation of Rotation Gain Thresholds Considering FOV, Gender, and Distractors. Williams NL; Peck TC IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3158-3168. PubMed ID: 31403416 [TBL] [Abstract][Full Text] [Related]
10. Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems. Zhang J; Langbehn E; Krupke D; Katzakis N; Steinicke F IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1671-1680. PubMed ID: 29543182 [TBL] [Abstract][Full Text] [Related]
11. Effects of virtual environment platforms on emotional responses. Kim K; Rosenthal MZ; Zielinski DJ; Brady R Comput Methods Programs Biomed; 2014 Mar; 113(3):882-93. PubMed ID: 24440136 [TBL] [Abstract][Full Text] [Related]
12. Visual Quality Adjustment for Volume Rendering in a Head-Tracked Virtual Environment. Hänel C; Weyers B; Hentschel B; Kuhlen TW IEEE Trans Vis Comput Graph; 2016 Apr; 22(4):1472-81. PubMed ID: 26780811 [TBL] [Abstract][Full Text] [Related]
13. Cognitive Resource Demands of Redirected Walking. Bruder G; Lubas P; Steinicke F IEEE Trans Vis Comput Graph; 2015 Apr; 21(4):539-44. PubMed ID: 26357104 [TBL] [Abstract][Full Text] [Related]
14. BiRD: Using Bidirectional Rotation Gain Differences to Redirect Users during Back-and-forth Head Turns in Walking. Xu SZ; Chen FXY; Gong R; Zhang FL; Zhang SH IEEE Trans Vis Comput Graph; 2024 May; 30(5):2693-2702. PubMed ID: 38437103 [TBL] [Abstract][Full Text] [Related]
15. On Rotation Gains Within and Beyond Perceptual Limitations for Seated VR. Wang C; Zhang SH; Zhang Y; Zollmann S; Hu SM IEEE Trans Vis Comput Graph; 2023 Jul; 29(7):3380-3391. PubMed ID: 35294351 [TBL] [Abstract][Full Text] [Related]
16. Demand characteristics in assessing motion sickness in a virtual environment: or does taking a motion sickness questionnaire make you sick? Young SD; Adelstein BD; Ellis SR IEEE Trans Vis Comput Graph; 2007; 13(3):422-8. PubMed ID: 17356210 [TBL] [Abstract][Full Text] [Related]
17. Effects of exposure to immersive computer-generated virtual nature and control environments on affect and cognition. Mostajeran F; Fischer M; Steinicke F; Kühn S Sci Rep; 2023 Jan; 13(1):220. PubMed ID: 36604527 [TBL] [Abstract][Full Text] [Related]
18. A Compelling Virtual Tour of the Dunhuang Cave With an Immersive Head-Mounted Display. Han PH; Chen YS; Liu IS; Jang YP; Tsai L; Chang A; Hung YP IEEE Comput Graph Appl; 2020; 40(1):40-55. PubMed ID: 31484109 [TBL] [Abstract][Full Text] [Related]
19. Autocalibration of multiprojector CAVE-like immersive environments. Sajadi B; Majumder A IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):381-93. PubMed ID: 22025748 [TBL] [Abstract][Full Text] [Related]
20. Design of a virtual reality laboratory for interdisciplinary medical application. Mehlitz M; Kleinoeder T; Weniger G; Rienhoff O Stud Health Technol Inform; 1998; 52 Pt 2():1051-5. PubMed ID: 10384621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]