These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26780918)
1. Evaluation of native plant flower characteristics for conservation biological control of Prays oleae. Nave A; Gonçalves F; Crespí AL; Campos M; Torres L Bull Entomol Res; 2016 Apr; 106(2):249-57. PubMed ID: 26780918 [TBL] [Abstract][Full Text] [Related]
2. Parasitic wasps related to Alissandrakis E; Psirofonia P; Kavallieratos NG; Stanković SS; Žikić V Zookeys; 2018; (773):143-154. PubMed ID: 30026664 [TBL] [Abstract][Full Text] [Related]
3. Alyssum (Lobularia maritima) selectively attracts and enhances the performance of Cotesia vestalis, a parasitoid of Plutella xylostella. Chen Y; Mao J; Reynolds OL; Chen W; He W; You M; Gurr GM Sci Rep; 2020 Apr; 10(1):6447. PubMed ID: 32296099 [TBL] [Abstract][Full Text] [Related]
4. Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth. Furlong MJ; Shi ZH; Liu YQ; Guo SJ; Lu YB; Liu SS; Zalucki MP J Econ Entomol; 2004 Dec; 97(6):1814-27. PubMed ID: 15666732 [TBL] [Abstract][Full Text] [Related]
5. The effect of floral resources on parasitoid and host longevity: prospects for conservation biological control in strawberries. Sigsgaard L; Betzer C; Naulin C; Eilenberg J; Enkegaard A; Kristensen K J Insect Sci; 2013; 13():104. PubMed ID: 24738921 [TBL] [Abstract][Full Text] [Related]
6. Fungal diversity associated to the olive moth, Prays Oleae bernard: a survey for potential entomopathogenic fungi. Oliveira I; Pereira JA; Lino-Neto T; Bento A; Baptista P Microb Ecol; 2012 May; 63(4):964-74. PubMed ID: 21994034 [TBL] [Abstract][Full Text] [Related]
7. Survival of three commercially available natural enemies exposed to Michigan wildflowers. Walton NJ; Isaacs R Environ Entomol; 2011 Oct; 40(5):1177-82. PubMed ID: 22251728 [TBL] [Abstract][Full Text] [Related]
8. Selective flowers to attract and enhance Telenomus laeviceps (Hymenoptera: Scelionidae): a released biocontrol agent of Mamestra brassicae (Lepidoptera: Noctuidae). Barloggio G; Tamm L; Nagel P; Luka H Bull Entomol Res; 2019 Apr; 109(2):160-168. PubMed ID: 29743126 [TBL] [Abstract][Full Text] [Related]
9. Attraction of Aphidius ervi (Hymenoptera: Braconidae) and Aphidoletes aphidimyza (Diptera: Cecidomyiidae) to Sweet Alyssum and Assessment of Plant Resources Effects on their Fitness. Aparicio Y; Gabarra R; Arnó J J Econ Entomol; 2018 Apr; 111(2):533-541. PubMed ID: 29365141 [TBL] [Abstract][Full Text] [Related]
10. Interactions between extrafloral nectaries, ants (Hymenoptera: Formicidae), and other natural enemies affect biological control of Grapholita molesta (Lepidoptera: Tortricidae) on peach (Rosales: Rosaceae). Mathews CR; Bottrell DG; Brown MW Environ Entomol; 2011 Feb; 40(1):42-51. PubMed ID: 22182610 [TBL] [Abstract][Full Text] [Related]
11. Populations, longevity, mortality and fecundity of Chrysoperla carnea (Neuroptera, Chrysopidae) from olive-orchards with different agricultural management systems. Corrales N; Campos M Chemosphere; 2004 Dec; 57(11):1613-9. PubMed ID: 15519406 [TBL] [Abstract][Full Text] [Related]
12. Diamondback moth in Ukraine: current status and potential for use biological control agents. Likar Y; Stefanovska T Commun Agric Appl Biol Sci; 2009; 74(2):387-92. PubMed ID: 20222594 [TBL] [Abstract][Full Text] [Related]
13. Land-Use Effect on Olive Groves Pest Alves JF; Mendes S; Alves da Silva A; Sousa JP; Paredes D Insects; 2021 Jan; 12(1):. PubMed ID: 33435550 [TBL] [Abstract][Full Text] [Related]
14. Mass rearing methods and biology of Microplitis mediator Haliday (Hymenoptera: Braconidae) in China, a candidate for biological control of Helicoverpa armigera (Lepidoptera: Noctuidae). Guo J; Lu Z; Qu Z; Pan W; Li J Commun Agric Appl Biol Sci; 2009; 74(2):393-5. PubMed ID: 20222595 [No Abstract] [Full Text] [Related]
15. Developmental and reproductive biology of the ectoparasitoid, Elasmus steffani, in a substitute host, Ephestia kuehniella. Redolfi I; Campos M J Insect Sci; 2010; 10():119. PubMed ID: 20874600 [TBL] [Abstract][Full Text] [Related]
16. Extrafloral nectar in an apple ecosystem to enhance biological control. Brown MW; Mathews CR; Krawczyk G J Econ Entomol; 2010 Oct; 103(5):1657-64. PubMed ID: 21061965 [TBL] [Abstract][Full Text] [Related]
17. Selection of insectary plants for the conservation of biological control agents of aphids and thrips in fruit orchards. Denis C; Riudavets J; Gabarra R; Molina P; Arnó J Bull Entomol Res; 2021 Oct; 111(5):517-527. PubMed ID: 33766164 [TBL] [Abstract][Full Text] [Related]
18. Effects of Interplanting Flowering Plants on the Biological Control of Corn Earworm (Lepidoptera: Noctuidae) and Thrips (Thysanoptera: Thripidae) in Sweet Corn. Manandhar R; Wright MG J Econ Entomol; 2016 Feb; 109(1):113-9. PubMed ID: 26500338 [TBL] [Abstract][Full Text] [Related]
19. Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California. Sime KR; Daane KM; Kirk A; Andrews JW; Johnson MW; Messing RH Bull Entomol Res; 2007 Jun; 97(3):233-42. PubMed ID: 17524155 [TBL] [Abstract][Full Text] [Related]
20. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Schuler TH; Denholm I; Clark SJ; Stewart CN; Poppy GM J Insect Physiol; 2004 May; 50(5):435-43. PubMed ID: 15121457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]