These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26781042)

  • 1. Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer.
    Kim TW; Choi KS
    J Phys Chem Lett; 2016 Feb; 7(3):447-51. PubMed ID: 26781042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport.
    Seabold JA; Zhu K; Neale NR
    Phys Chem Chem Phys; 2014 Jan; 16(3):1121-31. PubMed ID: 24287501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.
    Park Y; Kang D; Choi KS
    Phys Chem Chem Phys; 2014 Jan; 16(3):1238-46. PubMed ID: 24296682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serial hole transfer layers for a BiVO
    Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B
    Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.
    Kim TW; Choi KS
    Science; 2014 Feb; 343(6174):990-4. PubMed ID: 24526312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient charge separation and transfer of a TaON/BiVO
    Li N; Jiang Y; Wang X; Hu C; Jiang W; Li S; Xia L
    RSC Adv; 2021 Apr; 11(22):13269-13273. PubMed ID: 35423882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BiVO
    Xia L; Li J; Bai J; Li L; Chen S; Zhou B
    Nanomicro Lett; 2018; 10(1):11. PubMed ID: 30393660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-enhanced nanoporous BiVO4 photoanodes for efficient photoelectrochemical water oxidation.
    Gan J; Rajeeva BB; Wu Z; Penley D; Liang C; Tong Y; Zheng Y
    Nanotechnology; 2016 Jun; 27(23):235401. PubMed ID: 27119335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Varying the Photoanode/Catalyst Interfacial Composition on Solar Water Oxidation: The Case of BiVO
    Hilbrands AM; Zhang S; Zhou C; Melani G; Wi DH; Lee D; Xi Z; Head AR; Liu M; Galli G; Choi KS
    J Am Chem Soc; 2023 Nov; 145(43):23639-23650. PubMed ID: 37850865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.
    Rao PM; Cai L; Liu C; Cho IS; Lee CH; Weisse JM; Yang P; Zheng X
    Nano Lett; 2014 Feb; 14(2):1099-105. PubMed ID: 24437363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WO
    Ma Z; Song K; Wang L; Gao F; Tang B; Hou H; Yang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):889-897. PubMed ID: 30560657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BiVO
    Zheng L; Wang M; Li Y; Ma F; Li J; Jiang W; Liu M; Cheng H; Wang Z; Zheng Z; Wang P; Liu Y; Dai Y; Huang B
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An MgO passivation layer and hydrotalcite derived spinel Co
    Zhang J; Chen K; Bai Y; Wang L; Huang J; She H; Wang Q
    Nanoscale; 2024 May; 16(20):10038-10047. PubMed ID: 38712536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation.
    Jung H; Chae SY; Shin C; Min BK; Joo OS; Hwang YJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5788-96. PubMed ID: 25720751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Solution-Processed WO
    Lee BR; Lee MG; Park H; Lee TH; Lee SA; Bhat SSM; Kim C; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20004-20012. PubMed ID: 31083922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Formation of a Disordered Layer on Monoclinic BiVO
    Kim JK; Cho Y; Jeong MJ; Levy-Wendt B; Shin D; Yi Y; Wang DH; Zheng X; Park JH
    ChemSusChem; 2018 Mar; 11(5):933-940. PubMed ID: 29274301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO
    Pattengale B; Huang J
    Phys Chem Chem Phys; 2016 Dec; 18(48):32820-32825. PubMed ID: 27883137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Quantum Dot-Decorated Bismuth Vanadate Photoanodes for Highly Efficient Solar Water Oxidation.
    Luan P; Zhang X; Zhang Y; Li Z; Bach U; Zhang J
    ChemSusChem; 2019 Mar; 12(6):1240-1245. PubMed ID: 30684303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BiVO4 thin film photoanodes grown by chemical vapor deposition.
    Alarcón-Lladó E; Chen L; Hettick M; Mashouf N; Lin Y; Javey A; Ager JW
    Phys Chem Chem Phys; 2014 Jan; 16(4):1651-7. PubMed ID: 24322301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.