These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26781102)

  • 1. Peptide interfaces with graphene: an emerging intersection of analytical chemistry, theory, and materials.
    Russell SR; Claridge SA
    Anal Bioanal Chem; 2016 Apr; 408(11):2649-58. PubMed ID: 26781102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotic-Abiotic Interactions: Factors that Influence Peptide-Graphene Interactions.
    Kim SS; Kuang Z; Ngo YH; Farmer BL; Naik RR
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20447-53. PubMed ID: 26305504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.
    Walsh TR
    Acc Chem Res; 2017 Jul; 50(7):1617-1624. PubMed ID: 28665581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a peptide adsorbed on graphene and graphite.
    Katoch J; Kim SN; Kuang Z; Farmer BL; Naik RR; Tatulian SA; Ishigami M
    Nano Lett; 2012 May; 12(5):2342-6. PubMed ID: 22471315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.
    Lazar P; Zhang S; Safářová K; Li Q; Froning JP; Granatier J; Hobza P; Zbořil R; Besenbacher F; Dong M; Otyepka M
    ACS Nano; 2013 Feb; 7(2):1646-51. PubMed ID: 23346897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrillar structures formed by covalently bound, short, β-stranded peptides on self-assembled monolayers.
    Dugger JW; Webb LJ
    Langmuir; 2015 Mar; 31(11):3441-50. PubMed ID: 25738859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly.
    Wang J; Cao Y; Li Q; Liu L; Dong M
    Chemistry; 2015 Jun; 21(27):9632-7. PubMed ID: 26031933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of peptide-fatty acid bioconjugates on graphene: effects of fatty acid chain length and attachment point.
    Perdomo Y; Jin R; Parab AD; Knecht MR; Walsh TR
    J Mater Chem B; 2022 Aug; 10(31):6018-6025. PubMed ID: 35894139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective detection of target proteins by peptide-enabled graphene biosensor.
    Khatayevich D; Page T; Gresswell C; Hayamizu Y; Grady W; Sarikaya M
    Small; 2014 Apr; 10(8):1505-13, 1504. PubMed ID: 24677773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the Formation of Phospholipid Monolayer, Bilayer, and Intact Vesicle Layer on Graphene.
    Tabaei SR; Ng WB; Cho SJ; Cho NJ
    ACS Appl Mater Interfaces; 2016 May; 8(18):11875-80. PubMed ID: 27092949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Pyrene Stacks and Peptide Monolayers Tune the Electronic Properties of Functionalized Electrolyte-Gated Graphene Field-Effect Transistors.
    Thodkar K; Cazade PA; Bergmann F; Lopez-Calle E; Thompson D; Heindl D
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9134-9142. PubMed ID: 33573369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental three-dimensional description of the liquid hexadecane/graphite interface.
    Van LP; Kyrylyuk V; Polesel-Maris J; Thoyer F; Lubin C; Cousty J
    Langmuir; 2009 Jan; 25(2):639-42. PubMed ID: 19072577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the graphene-protein interface is required to preserve adsorbed protein function.
    Alava T; Mann JA; Théodore C; Benitez JJ; Dichtel WR; Parpia JM; Craighead HG
    Anal Chem; 2013 Mar; 85(5):2754-9. PubMed ID: 23363062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene.
    Deshpande A; Sham CH; Alaboson JM; Mullin JM; Schatz GC; Hersam MC
    J Am Chem Soc; 2012 Oct; 134(40):16759-64. PubMed ID: 22928587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field-controlled rippling of graphene.
    Osváth Z; Lefloch F; Bouchiat V; Chapelier C
    Nanoscale; 2013 Nov; 5(22):10996-1002. PubMed ID: 24065072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical detection of biomolecular adsorption on sprayed graphene sheets.
    Page TR; Hayamizu Y; So CR; Sarikaya M
    Biosens Bioelectron; 2012 Mar; 33(1):304-8. PubMed ID: 22326700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene Symmetry Amplified by Designed Peptide Self-Assembly.
    Mustata GM; Kim YH; Zhang J; DeGrado WF; Grigoryan G; Wanunu M
    Biophys J; 2016 Jun; 110(11):2507-2516. PubMed ID: 27276268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein adsorption to graphene surfaces controlled by chemical modification of the substrate surfaces.
    Kamiya Y; Yamazaki K; Ogino T
    J Colloid Interface Sci; 2014 Oct; 431():77-81. PubMed ID: 24992297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-nickel interfaces: a review.
    Dahal A; Batzill M
    Nanoscale; 2014 Mar; 6(5):2548-62. PubMed ID: 24477601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.