These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26781250)

  • 1. The Role of CNS in the Effects of Salt on Blood Pressure.
    Fujita M; Fujita T
    Curr Hypertens Rep; 2016 Feb; 18(2):10. PubMed ID: 26781250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of CNS in salt-sensitive hypertension.
    Fujita M; Fujita T
    Curr Hypertens Rep; 2013 Aug; 15(4):390-4. PubMed ID: 23689978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gαi2-protein-mediated signal transduction: central nervous system molecular mechanism countering the development of sodium-dependent hypertension.
    Wainford RD; Carmichael CY; Pascale CL; Kuwabara JT
    Hypertension; 2015 Jan; 65(1):178-86. PubMed ID: 25312437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease.
    Fujita M; Ando K; Kawarazaki H; Kawarasaki C; Muraoka K; Ohtsu H; Shimizu H; Fujita T
    Hypertension; 2012 Jan; 59(1):105-12. PubMed ID: 22083162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension.
    Fujita M; Ando K; Nagae A; Fujita T
    Hypertension; 2007 Aug; 50(2):360-7. PubMed ID: 17576857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species and the central nervous system in salt-sensitive hypertension: possible relationship with obesity-induced hypertension.
    Ando K; Fujita M
    Clin Exp Pharmacol Physiol; 2012 Jan; 39(1):111-6. PubMed ID: 21388436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha lipoic acid supplementation attenuates reactive oxygen species in hypothalamic paraventricular nucleus and sympathoexcitation in high salt-induced hypertension.
    Su Q; Liu JJ; Cui W; Shi XL; Guo J; Li HB; Huo CJ; Miao YW; Zhang M; Yang Q; Kang YM
    Toxicol Lett; 2016 Jan; 241():152-8. PubMed ID: 26518973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquisition of brain Na sensitivity contributes to salt-induced sympathoexcitation and cardiac dysfunction in mice with pressure overload.
    Ito K; Hirooka Y; Sunagawa K
    Circ Res; 2009 Apr; 104(8):1004-11. PubMed ID: 19299647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translation of salt retention to central activation of the sympathetic nervous system in hypertension.
    Brooks VL; Haywood JR; Johnson AK
    Clin Exp Pharmacol Physiol; 2005; 32(5-6):426-32. PubMed ID: 15854153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central Gαi
    Amraei R; Moreira JD; Wainford RD
    Front Endocrinol (Lausanne); 2022; 13():895466. PubMed ID: 35837296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension.
    Nagae A; Fujita M; Kawarazaki H; Matsui H; Ando K; Fujita T
    Circulation; 2009 Feb; 119(7):978-86. PubMed ID: 19204299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NF-κB Blockade in Hypothalamic Paraventricular Nucleus Inhibits High-Salt-Induced Hypertension Through NLRP3 and Caspase-1.
    Qi J; Yu XJ; Shi XL; Gao HL; Yi QY; Tan H; Fan XY; Zhang Y; Song XA; Cui W; Liu JJ; Kang YM
    Cardiovasc Toxicol; 2016 Oct; 16(4):345-54. PubMed ID: 26438340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Interleukin-1 beta to Suppress Sympathoexcitation in Hypothalamic Paraventricular Nucleus in Dahl Salt-Sensitive Hypertensive Rats.
    Qi J; Zhao XF; Yu XJ; Yi QY; Shi XL; Tan H; Fan XY; Gao HL; Yue LY; Feng ZP; Kang YM
    Cardiovasc Toxicol; 2016 Jul; 16(3):298-306. PubMed ID: 26304161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticosterone-activated mineralocorticoid receptor contributes to salt-induced sympathoexcitation in pressure overload mice.
    Ito K; Hirooka Y; Sunagawa K
    Clin Exp Hypertens; 2014; 36(8):550-6. PubMed ID: 24490674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central nervous system Gαi2-subunit proteins maintain salt resistance via a renal nerve-dependent sympathoinhibitory pathway.
    Kapusta DR; Pascale CL; Kuwabara JT; Wainford RD
    Hypertension; 2013 Feb; 61(2):368-75. PubMed ID: 23213191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The central role of the brain in salt-sensitive hypertension.
    Huang BS; Amin MS; Leenen FH
    Curr Opin Cardiol; 2006 Jul; 21(4):295-304. PubMed ID: 16755197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways.
    Nishimoto M; Fujita T
    Am J Physiol Renal Physiol; 2015 Mar; 308(5):F377-87. PubMed ID: 25520008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.
    Peleli M; Al-Mashhadi A; Yang T; Larsson E; Wåhlin N; Jensen BL; G Persson AE; Carlström M
    Am J Physiol Renal Physiol; 2016 Jan; 310(1):F43-56. PubMed ID: 26538440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension.
    Kawarazaki W; Fujita T
    Clin Exp Pharmacol Physiol; 2013 Dec; 40(12):929-36. PubMed ID: 24111570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for benzamil-sensitive proteins of the central nervous system in the pathogenesis of salt-dependent hypertension.
    Abrams JM; Osborn JW
    Clin Exp Pharmacol Physiol; 2008 May; 35(5-6):687-94. PubMed ID: 18387084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.