These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26781352)

  • 21. The Investigation on Resorcinarenes towards either Inhibiting or Promoting Insulin Fibrillation.
    Han X; Tian C; Gandra I; Eslava V; Galindres D; Vargas E; Leblanc R
    Chemistry; 2017 Dec; 23(71):17903-17907. PubMed ID: 29145692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly effective binding of methyl viologen dication and its radical cation by p-sulfonatocalix[4,5]arenes.
    Guo DS; Wang LH; Liu Y
    J Org Chem; 2007 Sep; 72(20):7775-8. PubMed ID: 17824653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Depolymerization of insulin amyloid fibrils by albumin-modified magnetic fluid.
    Siposova K; Kubovcikova M; Bednarikova Z; Koneracka M; Zavisova V; Antosova A; Kopcansky P; Daxnerova Z; Gazova Z
    Nanotechnology; 2012 Feb; 23(5):055101. PubMed ID: 22238252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear flow induces amyloid fibril formation.
    Hill EK; Krebs B; Goodall DG; Howlett GJ; Dunstan DE
    Biomacromolecules; 2006 Jan; 7(1):10-3. PubMed ID: 16398490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of insulin amyloid fibrils by Raman spectroscopy.
    Ortiz C; Zhang D; Ribbe AE; Xie Y; Ben-Amotz D
    Biophys Chem; 2007 Jul; 128(2-3):150-5. PubMed ID: 17451866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-field scanning optical microscopy measurements of fluorescent molecular probes binding to insulin amyloid fibrils.
    Kitts CC; Vanden Bout DA
    J Phys Chem B; 2009 Sep; 113(35):12090-5. PubMed ID: 19663402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of insulin amyloid fibril formation by cyclodextrins.
    Kitagawa K; Misumi Y; Ueda M; Hayashi Y; Tasaki M; Obayashi K; Yamashita T; Jono H; Arima H; Ando Y
    Amyloid; 2015; 22(3):181-6. PubMed ID: 26204452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy.
    Loksztejn A; Dzwolak W
    J Mol Biol; 2010 Jan; 395(3):643-55. PubMed ID: 19891974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective single crystal complexation of L- or D-leucine by p-sulfonatocalix[6]arene.
    Atwood JL; Dalgarno SJ; Hardie MJ; Raston CL
    Chem Commun (Camb); 2005 Jan; (3):337-9. PubMed ID: 15645029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release.
    Sun YL; Zhou Y; Li QL; Yang YW
    Chem Commun (Camb); 2013 Oct; 49(79):9033-5. PubMed ID: 23982479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Master and slave relationship between two types of self-propagating insulin amyloid fibrils.
    Surmacz-Chwedoruk W; Babenko V; Dzwolak W
    J Phys Chem B; 2014 Nov; 118(47):13582-9. PubMed ID: 25373010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-inclusion of proline-functionalised calix[4]arene leads to hydrogelation.
    Goh CY; Becker T; Brown DH; Skelton BW; Jones F; Mocerino M; Ogden MI
    Chem Commun (Camb); 2011 Jun; 47(21):6057-9. PubMed ID: 21512712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amyloid fibril formation from crude protein mixtures.
    Rao SP; Meade SJ; Joyce NI; Healy JP; Sutton KH; Larsen NG; Gerrard JA
    Biotechnol Prog; 2011; 27(6):1768-76. PubMed ID: 21910260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interplay of p-sulfonatocalix[4]arene and crown ethers en route to molecular capsules and "Russian dolls".
    Dalgarno SJ; Fisher J; Raston CL
    Chemistry; 2006 Mar; 12(10):2772-7. PubMed ID: 16470768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bilayers, corrugated bilayers, and coordination polymers of p-sulfonatocalix[6]arene.
    Dalgarno SJ; Hardie MJ; Atwood JL; Raston CL
    Inorg Chem; 2004 Oct; 43(20):6351-6. PubMed ID: 15446883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy.
    Khurana R; Ionescu-Zanetti C; Pope M; Li J; Nielson L; Ramírez-Alvarado M; Regan L; Fink AL; Carter SA
    Biophys J; 2003 Aug; 85(2):1135-44. PubMed ID: 12885658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lanthanide-induced helical arrays of [{Co(III) sepulchrate} intersection {p-sulfonatocalix[4]arene}] supermolecules.
    Smith CB; Barbour LJ; Makha M; Raston CL; Sobolev AN
    Chem Commun (Camb); 2006 Mar; (9):950-2. PubMed ID: 16491172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Counterion exchange as a decisive factor in the formation of host:guest complexes by p-sulfonatocalix[4]arene.
    Francisco V; Basilio N; García-Río L
    J Phys Chem B; 2012 May; 116(17):5308-15. PubMed ID: 22489553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.