These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26781811)

  • 1. Genetic engineering: In vivo genome editing - growing in strength.
    Koch L
    Nat Rev Genet; 2016 Mar; 17(3):124. PubMed ID: 26781811
    [No Abstract]   [Full Text] [Related]  

  • 2. Cautious welcome for gene editing of Duchenne muscular dystrophy in animal model.
    Hawkes N
    BMJ; 2016 Jan; 351():h7033. PubMed ID: 26729900
    [No Abstract]   [Full Text] [Related]  

  • 3. Exon Snipping in Duchenne Muscular Dystrophy.
    Kemaladewi DU; Cohn RD
    Trends Mol Med; 2016 Mar; 22(3):187-189. PubMed ID: 26856237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.
    Nelson CE; Hakim CH; Ousterout DG; Thakore PI; Moreb EA; Castellanos Rivera RM; Madhavan S; Pan X; Ran FA; Yan WX; Asokan A; Zhang F; Duan D; Gersbach CA
    Science; 2016 Jan; 351(6271):403-7. PubMed ID: 26721684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo gene editing in dystrophic mouse muscle and muscle stem cells.
    Tabebordbar M; Zhu K; Cheng JKW; Chew WL; Widrick JJ; Yan WX; Maesner C; Wu EY; Xiao R; Ran FA; Cong L; Zhang F; Vandenberghe LH; Church GM; Wagers AJ
    Science; 2016 Jan; 351(6271):407-411. PubMed ID: 26721686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy.
    Long C; Amoasii L; Mireault AA; McAnally JR; Li H; Sanchez-Ortiz E; Bhattacharyya S; Shelton JM; Bassel-Duby R; Olson EN
    Science; 2016 Jan; 351(6271):400-3. PubMed ID: 26721683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligonucleotides against a splicing enhancer sequence led to dystrophin production in muscle cells from a Duchenne muscular dystrophy patient.
    Takeshima Y; Wada H; Yagi M; Ishikawa Y; Ishikawa Y; Minami R; Nakamura H; Matsuo M
    Brain Dev; 2001 Dec; 23(8):788-90. PubMed ID: 11720794
    [No Abstract]   [Full Text] [Related]  

  • 8. In Vivo Modeling of Skeletal Muscle Diseases Using the CRISPR/Cas9 System in Rats.
    Nakamura K; Tanaka T; Yamanouchi K
    Methods Mol Biol; 2023; 2640():277-285. PubMed ID: 36995602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In dogs, CRISPR fixes a muscular dystrophy.
    Cohen J
    Science; 2018 Aug; 361(6405):835. PubMed ID: 30166469
    [No Abstract]   [Full Text] [Related]  

  • 10. CTLA4Ig delivered by high-capacity adenoviral vector induces stable expression of dystrophin in mdx mouse muscle.
    Jiang Z; Schiedner G; Gilchrist SC; Kochanek S; Clemens PR
    Gene Ther; 2004 Oct; 11(19):1453-61. PubMed ID: 15269713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.
    Wang JZ; Wu P; Shi ZM; Xu YL; Liu ZJ
    Brain Dev; 2017 Aug; 39(7):547-556. PubMed ID: 28390761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retroviral vectors for gene therapy of Duchenne muscular dystrophy.
    Fassati A; Bresolin N
    Neurol Sci; 2000; 21(5 Suppl):S925-7. PubMed ID: 11382191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exon Skipping Therapy Using Phosphorodiamidate Morpholino Oligomers in the mdx52 Mouse Model of Duchenne Muscular Dystrophy.
    Miyatake S; Mizobe Y; Takizawa H; Hara Y; Yokota T; Takeda S; Aoki Y
    Methods Mol Biol; 2018; 1687():123-141. PubMed ID: 29067660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Use of Antisense Oligonucleotides for the Treatment of Duchenne Muscular Dystrophy.
    Relizani K; Goyenvalle A
    Methods Mol Biol; 2018; 1687():171-183. PubMed ID: 29067663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the correction of muscular dystrophy by gene editing.
    Olson EN
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34074727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy.
    Echigoya Y; Lim KRQ; Trieu N; Bao B; Miskew Nichols B; Vila MC; Novak JS; Hara Y; Lee J; Touznik A; Mamchaoui K; Aoki Y; Takeda S; Nagaraju K; Mouly V; Maruyama R; Duddy W; Yokota T
    Mol Ther; 2017 Nov; 25(11):2561-2572. PubMed ID: 28865998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of novel therapeutic approaches for Duchenne muscular dystrophy].
    Takeshima Y
    No To Hattatsu; 2014 Mar; 46(2):109-14. PubMed ID: 24738186
    [No Abstract]   [Full Text] [Related]  

  • 18. Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy.
    Atmanli A; Chai AC; Cui M; Wang Z; Nishiyama T; Bassel-Duby R; Olson EN
    Circ Res; 2021 Sep; 129(6):602-616. PubMed ID: 34372664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Frontline studies on Duchenne muscular dystrophy treatment].
    Matsuo M
    No To Hattatsu; 2009 Mar; 41(2):92-5. PubMed ID: 19517771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromuscular disease: Genome editing shows promise in an in vivo model of Duchenne muscular dystrophy.
    Wood H
    Nat Rev Neurol; 2016 Feb; 12(2):63. PubMed ID: 26782331
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.