These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26781824)

  • 1. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for predicting post-translational modifications on serine and threonine sites by using site-modification network profiles.
    Wang M; Jiang Y; Xu X
    Mol Biosyst; 2015 Nov; 11(11):3092-100. PubMed ID: 26344496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest.
    Fan W; Xu X; Shen Y; Feng H; Li A; Wang M
    Amino Acids; 2014 Apr; 46(4):1069-78. PubMed ID: 24452754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A summary of computational resources for protein phosphorylation.
    Xue Y; Gao X; Cao J; Liu Z; Jin C; Wen L; Yao X; Ren J
    Curr Protein Pept Sci; 2010 Sep; 11(6):485-96. PubMed ID: 20491621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier.
    Qiu WR; Xiao X; Xu ZC; Chou KC
    Oncotarget; 2016 Aug; 7(32):51270-51283. PubMed ID: 27323404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iMulti-HumPhos: a multi-label classifier for identifying human phosphorylated proteins using multiple kernel learning based support vector machines.
    Hasan MAM; Ahmad S; Molla MKI
    Mol Biosyst; 2017 Jul; 13(8):1608-1618. PubMed ID: 28682387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iPTMnet: Integrative Bioinformatics for Studying PTM Networks.
    Ross KE; Huang H; Ren J; Arighi CN; Li G; Tudor CO; Lv M; Lee JY; Chen SC; Vijay-Shanker K; Wu CH
    Methods Mol Biol; 2017; 1558():333-353. PubMed ID: 28150246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iPTMnet: an integrated resource for protein post-translational modification network discovery.
    Huang H; Arighi CN; Ross KE; Ren J; Li G; Chen SC; Wang Q; Cowart J; Vijay-Shanker K; Wu CH
    Nucleic Acids Res; 2018 Jan; 46(D1):D542-D550. PubMed ID: 29145615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Interactions Between Kinases and Substrates Based on Protein-Protein Interaction Network.
    Chen Q; Deng C; Lan W; Liu Z; Zheng R; Liu J; Wang J
    J Comput Biol; 2019 Aug; 26(8):836-845. PubMed ID: 30990327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the performance of protein kinase identification via high dimensional protein-protein interactions and substrate structure data.
    Xu X; Li A; Zou L; Shen Y; Fan W; Wang M
    Mol Biosyst; 2014 Mar; 10(3):694-702. PubMed ID: 24448631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Prediction and Analysis for Tyrosine Post-Translational Modifications via Elastic Net.
    Cao M; Chen G; Wang L; Wen P; Shi S
    J Chem Inf Model; 2018 Jun; 58(6):1272-1281. PubMed ID: 29775287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Literature mining of protein phosphorylation using dependency parse trees.
    Wang M; Xia H; Sun D; Chen Z; Wang M; Li A
    Methods; 2014 Jun; 67(3):386-93. PubMed ID: 24440484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of tyrosine sulfation with mRMR feature selection and analysis.
    Niu S; Huang T; Feng K; Cai Y; Li Y
    J Proteome Res; 2010 Dec; 9(12):6490-7. PubMed ID: 20973568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns.
    Wong YH; Lee TY; Liang HK; Huang CM; Wang TY; Yang YH; Chu CH; Huang HD; Ko MT; Hwang JK
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W588-94. PubMed ID: 17517770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational phosphorylation network reconstruction: methods and resources.
    Duan G; Walther D
    Methods Mol Biol; 2015; 1306():177-94. PubMed ID: 25930703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of kinase-substrate relations based on heterogeneous networks.
    Li H; Wang M; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542003. PubMed ID: 26608750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics Analysis of PTM-Modified Protein Interaction Networks and Complexes.
    Woodsmith J; Stelzl U; Vinayagam A
    Methods Mol Biol; 2017; 1558():321-332. PubMed ID: 28150245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.