BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26781824)

  • 1. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for predicting post-translational modifications on serine and threonine sites by using site-modification network profiles.
    Wang M; Jiang Y; Xu X
    Mol Biosyst; 2015 Nov; 11(11):3092-100. PubMed ID: 26344496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest.
    Fan W; Xu X; Shen Y; Feng H; Li A; Wang M
    Amino Acids; 2014 Apr; 46(4):1069-78. PubMed ID: 24452754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A summary of computational resources for protein phosphorylation.
    Xue Y; Gao X; Cao J; Liu Z; Jin C; Wen L; Yao X; Ren J
    Curr Protein Pept Sci; 2010 Sep; 11(6):485-96. PubMed ID: 20491621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier.
    Qiu WR; Xiao X; Xu ZC; Chou KC
    Oncotarget; 2016 Aug; 7(32):51270-51283. PubMed ID: 27323404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iMulti-HumPhos: a multi-label classifier for identifying human phosphorylated proteins using multiple kernel learning based support vector machines.
    Hasan MAM; Ahmad S; Molla MKI
    Mol Biosyst; 2017 Jul; 13(8):1608-1618. PubMed ID: 28682387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iPTMnet: Integrative Bioinformatics for Studying PTM Networks.
    Ross KE; Huang H; Ren J; Arighi CN; Li G; Tudor CO; Lv M; Lee JY; Chen SC; Vijay-Shanker K; Wu CH
    Methods Mol Biol; 2017; 1558():333-353. PubMed ID: 28150246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iPTMnet: an integrated resource for protein post-translational modification network discovery.
    Huang H; Arighi CN; Ross KE; Ren J; Li G; Chen SC; Wang Q; Cowart J; Vijay-Shanker K; Wu CH
    Nucleic Acids Res; 2018 Jan; 46(D1):D542-D550. PubMed ID: 29145615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Interactions Between Kinases and Substrates Based on Protein-Protein Interaction Network.
    Chen Q; Deng C; Lan W; Liu Z; Zheng R; Liu J; Wang J
    J Comput Biol; 2019 Aug; 26(8):836-845. PubMed ID: 30990327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the performance of protein kinase identification via high dimensional protein-protein interactions and substrate structure data.
    Xu X; Li A; Zou L; Shen Y; Fan W; Wang M
    Mol Biosyst; 2014 Mar; 10(3):694-702. PubMed ID: 24448631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Prediction and Analysis for Tyrosine Post-Translational Modifications via Elastic Net.
    Cao M; Chen G; Wang L; Wen P; Shi S
    J Chem Inf Model; 2018 Jun; 58(6):1272-1281. PubMed ID: 29775287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Literature mining of protein phosphorylation using dependency parse trees.
    Wang M; Xia H; Sun D; Chen Z; Wang M; Li A
    Methods; 2014 Jun; 67(3):386-93. PubMed ID: 24440484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of tyrosine sulfation with mRMR feature selection and analysis.
    Niu S; Huang T; Feng K; Cai Y; Li Y
    J Proteome Res; 2010 Dec; 9(12):6490-7. PubMed ID: 20973568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns.
    Wong YH; Lee TY; Liang HK; Huang CM; Wang TY; Yang YH; Chu CH; Huang HD; Ko MT; Hwang JK
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W588-94. PubMed ID: 17517770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational phosphorylation network reconstruction: methods and resources.
    Duan G; Walther D
    Methods Mol Biol; 2015; 1306():177-94. PubMed ID: 25930703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of kinase-substrate relations based on heterogeneous networks.
    Li H; Wang M; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542003. PubMed ID: 26608750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.