BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26781922)

  • 1. Inhibitory effects of several saturated fatty acids and their related fatty alcohols on the growth of Candida albicans.
    Hayama K; Takahashi M; Yui S; Abe S
    Drug Discov Ther; 2015 Dec; 9(6):386-90. PubMed ID: 26781922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Anti-Candida activity of aroma candy and its protective activity against murine oral candidiasis].
    Hayama K; Takahashi M; Suzuki M; Ezawa K; Yamazaki M; Matsukawa T; Kishi A; Sato N; Abe S
    Med Mycol J; 2015; 56(1):J23-9. PubMed ID: 25855024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Dietary Food Components Capric Acid and Caprylic Acid Inhibit Virulence Factors in Candida albicans Through Multitargeting.
    Jadhav A; Mortale S; Halbandge S; Jangid P; Patil R; Gade W; Kharat K; Karuppayil SM
    J Med Food; 2017 Nov; 20(11):1083-1090. PubMed ID: 28922057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans.
    Messier C; Grenier D
    Mycoses; 2011 Nov; 54(6):e801-6. PubMed ID: 21615543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro killing of Candida albicans by fatty acids and monoglycerides.
    Bergsson G; Arnfinnsson J; Steingrímsson O ; Thormar H
    Antimicrob Agents Chemother; 2001 Nov; 45(11):3209-12. PubMed ID: 11600381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effects of an aroma candy on oral Candida albicans colony-forming units (CFU) and oral hygiene states in healthy elderly carrying Candida albicans].
    Suzuki M; Hayama K; Takahashi M; Ezawa K; Yamazaki M; Matsukawa T; Kishi A; Satou N; Abe S
    Med Mycol J; 2015; 56(1):J31-40. PubMed ID: 25855026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of inhibitory activity on mycelial growth of Candida albicans and therapy for murine oral candidiasis by the combined use of terpinen-4-ol and a middle-chain fatty acid, capric acid].
    Ninomiya K; Hayama K; Ishijima S; Takahashi M; Kurihara J; Abe S
    Yakugaku Zasshi; 2013; 133(1):133-40. PubMed ID: 23292030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Inhibition of Candida mycelia growth by a medium chain fatty acids, capric acid in vitro and its therapeutic efficacy in murine oral candidiasis].
    Takahashi M; Inoue S; Hayama K; Ninomiya K; Abe S
    Med Mycol J; 2012; 53(4):255-61. PubMed ID: 23257726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inhibition of Growth of Candida albicans by a Lysozyme-chitosan Conjugate, LYZOX and its Combination with Decanoic Acid].
    Kageshima H; Hayama K; Takahashi M; Abe M; Yamada T; Saito A; Hirano S; Murakami Y; Abe S
    Med Mycol J; 2017; 58(3):J63-J69. PubMed ID: 28855481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disparate Candida albicans Biofilm Formation in Clinical Lipid Emulsions Due to Capric Acid-Mediated Inhibition.
    Willems HME; Stultz JS; Coltrane ME; Fortwendel JP; Peters BM
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31405860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.
    Murzyn A; Krasowska A; Stefanowicz P; Dziadkowiec D; Łukaszewicz M
    PLoS One; 2010 Aug; 5(8):e12050. PubMed ID: 20706577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cinnamaldehyde on hyphal growth of C. albicans under various treatment conditions.
    Taguchi Y; Hasumi Y; Hayama K; Arai R; Nishiyama Y; Abe S
    Med Mycol J; 2012; 53(3):199-204. PubMed ID: 23149355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans.
    Pointer BR; Boyer MP; Schmidt M
    Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid.
    Chung SC; Kim TI; Ahn CH; Shin J; Oh KB
    FEBS Lett; 2010 Nov; 584(22):4639-45. PubMed ID: 20965180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF).
    Vílchez R; Lemme A; Ballhausen B; Thiel V; Schulz S; Jansen R; Sztajer H; Wagner-Döbler I
    Chembiochem; 2010 Jul; 11(11):1552-62. PubMed ID: 20572249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Candida albicans morphogenesis by fatty acid metabolites.
    Noverr MC; Huffnagle GB
    Infect Immun; 2004 Nov; 72(11):6206-10. PubMed ID: 15501745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin.
    Messier C; Epifano F; Genovese S; Grenier D
    Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between cell morphology and intracellular potassium concentration in Candida albicans.
    Watanabe H; Azuma M; Igarashi K; Ooshima H
    J Antibiot (Tokyo); 2006 May; 59(5):281-7. PubMed ID: 16883777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone acetylation increases in response to ferulic, gallic, and sinapic acids acting synergistically in vitro to inhibit Candida albicans yeast-to-hyphae transition.
    Câmara CRS; Shi Q; Pedersen M; Zbasnik R; Nickerson KW; Schlegel V
    Phytother Res; 2019 Feb; 33(2):319-326. PubMed ID: 30375074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valinomycin affects the morphology of Candida albicans.
    Watanabe H; Azuma M; Igarashi K; Ooshima H
    J Antibiot (Tokyo); 2005 Dec; 58(12):753-8. PubMed ID: 16506692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.