These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26781930)

  • 41. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis.
    Niu SH; Liu C; Yuan HW; Li P; Li Y; Li W
    BMC Genomics; 2015 Sep; 16(1):693. PubMed ID: 26369937
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into Maize LEA proteins: from proteomics to functional approaches.
    Amara I; Odena A; Oliveira E; Moreno A; Masmoudi K; Pagès M; Goday A
    Plant Cell Physiol; 2012 Feb; 53(2):312-29. PubMed ID: 22199372
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A rice jacalin-related mannose-binding lectin gene, OsJRL, enhances Escherichia coli viability under high salinity stress and improves salinity tolerance of rice.
    He X; Li L; Xu H; Xi J; Cao X; Xu H; Rong S; Dong Y; Wang C; Chen R; Xu J; Gao X; Xu Z
    Plant Biol (Stuttg); 2017 Mar; 19(2):257-267. PubMed ID: 27718311
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family.
    Liu Y; Yang M; Cheng H; Sun N; Liu S; Li S; Wang Y; Zheng Y; Uversky VN
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1291-1303. PubMed ID: 28867216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli.
    Metwally K; Ikeno S
    Appl Biochem Biotechnol; 2020 May; 191(1):164-176. PubMed ID: 32096062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses.
    Pascual MB; Cánovas FM; Ávila C
    BMC Plant Biol; 2015 Oct; 15():254. PubMed ID: 26500018
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional characterization of late embryogenesis abundant genes and promoters in pearl millet (Pennisetum glaucum L.) for abiotic stress tolerance.
    Divya K; Palakolanu SR; Kavi Kishor P; Rajesh AS; Vadez V; Sharma KK; Mathur PB
    Physiol Plant; 2021 Dec; 173(4):1616-1628. PubMed ID: 34455597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes.
    Li N; Zhang S; Liang Y; Qi Y; Chen J; Zhu W; Zhang L
    J Proteomics; 2018 Feb; 172():122-142. PubMed ID: 28982538
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of the Group 1 late embryogenesis abundant (Lea) genes: analysis of the Lea B19 gene family in barley.
    Stacy RA; Espelund M; Saebøe-Larssen S; Hollung K; Helliesen E; Jakobsen KS
    Plant Mol Biol; 1995 Sep; 28(6):1039-54. PubMed ID: 7548822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new Em-like protein from Lactuca sativa, LsEm1, enhances drought and salt stress tolerance in Escherichia coli and rice.
    Xiang DJ; Man LL; Zhang CL; Peng-Liu ; Li ZG; Zheng GC
    Protoplasma; 2018 Jul; 255(4):1089-1106. PubMed ID: 29417232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Transcriptional Landscape and Hub Genes Associated with Physiological Responses to Drought Stress in
    Pervaiz T; Liu SW; Uddin S; Amjid MW; Niu SH; Wu HX
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502511
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies.
    Lin CP; Huang JP; Wu CS; Hsu CY; Chaw SM
    Genome Biol Evol; 2010; 2():504-17. PubMed ID: 20651328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression.
    Stival Sena J; Giguère I; Rigault P; Bousquet J; Mackay J
    Tree Physiol; 2018 Mar; 38(3):442-456. PubMed ID: 29040752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Late embryogenesis abundant (LEA) gene family in
    Chen J; Li N; Wang X; Meng X; Cui X; Chen Z; Ren H; Ma J; Liu H
    Plant Signal Behav; 2021 May; 16(5):1891769. PubMed ID: 33818288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Comparative sequence analysis of the LEA gene fragment in Pinus sibirica du tour and Pinus pumila (Pallas) regel].
    Mglinets AV; Sokolov VA; Petrova EA; Goroshkevich SN
    Genetika; 2014 Feb; 50(2):167-71. PubMed ID: 25711024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The complete chloroplast genome of the Taiwan red pine Pinus taiwanensis (Pinaceae).
    Fang MF; Wang YJ; Zu YM; Dong WL; Wang RN; Deng TT; Li ZH
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Jul; 27(4):2732-3. PubMed ID: 26057016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dissecting the Genomic Diversification of Late Embryogenesis Abundant (LEA) Protein Gene Families in Plants.
    Artur MAS; Zhao T; Ligterink W; Schranz E; Hilhorst HWM
    Genome Biol Evol; 2019 Feb; 11(2):459-471. PubMed ID: 30407531
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis.
    Guo Y; Niu S; El-Kassaby YA; Li W
    Physiol Plant; 2021 Jan; 171(1):34-47. PubMed ID: 32770551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and expression profiles of gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis.
    Niu S; Yuan L; Zhang Y; Chen X; Li W
    Funct Integr Genomics; 2014 Dec; 14(4):697-705. PubMed ID: 25091154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster.
    de Vega-Bartol JJ; Simões M; Lorenz WW; Rodrigues AS; Alba R; Dean JF; Miguel CM
    BMC Plant Biol; 2013 Aug; 13():123. PubMed ID: 23987738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.